
修士学位論文

題目

Investigating Clone Metrics of Merged Code Clones

in Java Programs

指導教員

井上克郎 教授

報告者

Choi Eunjong

平成 24年 2月 7日

大阪大学 大学院情報科学研究科

コンピュータサイエンス専攻 ソフトウェア工学講座

平成 23年度 修士学位論文

Investigating Clone Metrics of Merged Code Clones

in Java Programs

Choi Eunjong

Abstract

A code clone represents similar code fragments in source code. It has been said that the

existence of code clones makes software maintenance more difficult because when a defect

is included in a code fragment corresponding to the code clone, the other code fragments

comprise of the same code clone should be inspected for the same kind of defect.

Even though developers would like to merge code clones into a single method to im-

prove the maintainability of source code, they do not know what characteristics of code

clones are appropriate for perform refactoring and which refactoring patterns could be

applied. Therefore, information on the characteristics of code clones that were performed

refactoring and its applied refactoring patterns is necessary.

In this study, I investigate the characteristic of code clones that were performing refac-

toring and their applied refactoring patterns in Java programs. In the approach, at first,

I get history data of open source projects from software repository. Then, I detect Java

methods that were performed refactoring between previous and current versions. Next, I

identify pair of cloned methods that were performed refactoring. Finally, I investigate the

characteristics of code clones that were performed refactoring and their applied refactoring

patterns.

Keywords

Code Clone

Refactoring

Clone Metrics

1

目 次

1 Introduction 3

2 Background 5

2.1 Code Clone . 5

2.1.1 Terminologies . 5

2.1.2 Causes of Code Clones . 5

2.2 Refactoring . 7

2.2.1 Purpose of Refactoring . 7

2.2.2 Refactoring Patterns to Code Clones 8

3 Proposed Approach 14

3.1 Definition . 14

3.2 Identify Clone Refactoring . 14

3.3 Measurement of Clone Characteristics . 18

4 Case Study 20

4.1 Target System . 20

4.2 Result . 20

4.2.1 Difference on Similarity . 21

4.2.2 Difference on a Length . 22

4.2.3 Class distance . 23

5 Related work and discussion 24

6 Conclusion 26

Acknowledgments 27

参考文献 28

2

1 Introduction

The cost of software development is one of crucial issues. Especially, software mainte-

nance occupies over 65 percentages of total software costs [14] due to the many factors

that make software maintenance difficult. The existence code clones in source code is

one of the main factors that occurs time and cost consuming tasks in the maintenance.

when a defect is included in a code fragment corresponding to the code clone, the other

code fragments comprise of the same code clone should be inspected for the same kind

of defect. If target software consists of 1MLOC or more lines, it takes much times and

efforts to detect defects from all code clones, and then, this task become critical software

maintenance problem.

Refactoring [2] is one of the considerable activities that alleviates problems due to code

clones because code clones can be merged into a single method by performing refactoring.

However, all code clones are not always appropriate for refactoring. For example, code

clones derived from programming idiom are necessary to be existed in source code for spe-

cific implementation such as checking the close after open the stream in Java programming,

or personal dialects of individual developers [7].

Although code clones are not always appropriate for performing refactoring, program-

mers would like to find and modularize common functionalities in an important system

such as social infrastructure, financial system. Theses systems will be maintained in next

10 years as a part of the infrastructure of a society. Due to the limited development time

and cost, it is not acceptable for developers to check manually all the detected code clones

in source code. Therefore, information on what sort of code clones were performed refac-

toring and how do code clones were performed refactoring is necessary to help developers

when they would like to performing refactoring to code clones.

In this study, I investigate the characteristic of code clones that were performed refactor-

ing and their applied refactoring patterns using history data of Java open source projects. I

select 7 refactoring patterns(extract class, extract method, extract superclass, form template

method, parameterize method, pull up method, and replace method with method object) can

be used to merge code cones into a single method. In case study, I get history data of

open source projects from software repository, and then, I select methods that were ap-

plied predefined refactoring patterns from the outputs of the state of art of REF-FINDER

[10][8]. REF-FINDER is a refactoring detection tool between a pair of Java program ver-

sions. Next, I identify a pair of cloned methods using similarity metrics, usim(undirected

3

similarity)[9]. Finally, I investigate the characteristics of code clones that were performed

refactoring and their applied refactoring patterns.

The remaining part of the paper is structured as follows: Section 2 explains the back-

grounds of this study. Section 3 describes proposed approach, while Section 4 explains the

case study. Section 5 describes Related Work and Section 6 concludes.

4

2 Background

In this section, I discuss terminologies on code clone and refactoring to give clear idea

of this study.

2.1 Code Clone

A code clone represents lexically, syntactically, or semantically similar code fragments

in source code. Many literatures on code clone and its techniques have been published

in the past two decades. This section shortly explains basic terminologies in code clone

research, Clone Pair, Clone Set and then discusses the causes of code clones.

2.1.1 Terminologies

Clone relation represents an equivalence relation (i.e. reflexive, transitive, and symmet-

ric relations) on code fragments. It holds between two code fragments if and only if they

are the same sequences of code fragments[6], and the following terminologies are defined

in terms of clone relation.

Clone Pair : A pair of code fragments if the clone relation holds between them

Clone Set : A group of code fragments where the clone relation holds between any clone

pairs.

Figure 1 illustrates an example of clone pair and clone set. In Figure 1, f1 and f3 consist

of a clone pair. In addition, f2 and f4, f2 and f5, and f4 and f5 are clone pairs. Moreover,

in case of clone set, f1 and f3 and f2, f4, and f5 comprise each clone set. In brief, Clone

Pair and clone sets in In Figure 1 are

Clone Pair : (f1, f3), (f2, f4), (f2, f5), (f4, f5)

Clone Set : {f1, f3}, {f2, f4, f5}

2.1.2 Causes of Code Clones

Well-known cause of code clones is copying existing code fragment and then pasted it

with or without modification. Some programmers can not help copying code fragment

from existing source code and pasting it due to the limited time, or lack of knowledge

5

�������������	 �
�
 � �
 � ��
� ���

�

������ ���� � ������ ���� �

������� � �����	 �
�
 � �
 � ��
� ���

�

���
��� � �	 �
�� !� "�� #�"
�$%&�'��!"�	�

�

����" � �	 �
�� !� "�� #�"
�$%&�'��!"�	�

�

((((((((((((

((((((((((((
)*

)+

),

)-

).

���
��� � �	 �
�� !� "�� #�"
�$%&�'��!"�	�

�

((((((((((((

((((((((((((

図 1: Code Pair and Clone Set

of project. On the contrary, some code clones are created unintentionally. For instance,

some solution patterns are recursively implemented base on programmer’s memory to solve

specific problem without intention . C. K. Roy et. al. discussed various reasons for why

code clones are introduced in the source code[11].

Developments Strategy

Some code clones are introduced in software systems because of reusing code, logic,

design and/or an entire system and the way of system developing. Sometime, code

fragments created by development tools become code clones because these tools are

often use the same template to generate the identical or similar logic.

Maintenance Benefits

Code fragments are reused in software systems to obtain several maintenance benefits

in some systems.. For instance, reusing the existing code fragments by copying and

adapting to the new product is recommended tasks in financial system to preserve

high reliability and avoid high risk of create new code logic.

Overcoming underlying Limitations

Some code clones are introduced in software systems due to the limitations of the

programming languages, and constraints associated with the ability of programmers.

If software system is large, programmers have a difficulty to understand overall of

assigned software system within a given period of time. Therefore, they reuse existing

6

code fragments because it is an easy way of implementation at hand.

Cloning by Accidents

Some code clones are introduced in software systems by accidents. For instance,

when a developer implementates a specific function using specific APIs, he/she

should implementate series of function calls and/or other ordered sequences of com-

mands that are defined by API. These sequence orderings sometimes become code

clone.

2.2 Refactoring

Fowler defines refactoring as a change to the internal structure of software to make it

easier to understand and cheaper to modify without changing its observable behavior[2].

This section shortly discusses of purpose of refactoring and explains refactoring patterns

that can be used to merged code clones into a single method.

2.2.1 Purpose of Refactoring

Modifying existing code is a risky task. It might takes a time and efforts. In addition,

unexpectable defects might be introduced to software systems due to the modification.

However, despite of many risks of modification of existing code, it is worth modifying

existing code by performing refactoring because we can achieve many benefits as the

results of refactoring[2].

Improve the Design of Software

The design of the program will decay without refactoring. As programmers change

code (changes to realize short-term goals or changes made without a full comprehen-

sion of the design of the code) the code loses its structure. It becomes harder to see

the design by reading the code. Regular refactoring helps code retain its shape(e,g,

to eliminate duplicated code). By eliminating the duplicates, programmer ensures

that the code says everything alone and only one, which is the essence of good design.

Improve Understandability of Code

A programmer sometimes has to modify code written by other programmers or code

that he/she wrote in the past, but he/she does not remember things about it. In this

cases, he/she have to understand the code before modifying. However, It takes many

efforts to understand the code that are not refactored. A bits of code might be wrong

7

place in code or structure of code is too complicate to understand. Refactoring makes

code cleaner and better communicate its purpose. Refactoring provides higher levels

of understanding code.

Help to Find Bugs

Help in understanding the code also helps programmer spots bugs. If a programmer

refactor code, he/she works deeply on understanding what the code dose, and he/she

put that new understanding right back into the code. In addition by clarifying the

structures of the program using refactoring, a programmer clarifies certain assump-

tions he/she has made, to the point at which even he/she can not avoid spotting the

bugs.

Help Programmer Develop Fast

All the earlier points come down to this: Refactoring helps developers develop code

more quickly. A good design is essential for rapid software development. Indeed, the

whole point of having a good design is to allow rapid development. Without a good

design, a developer can progress quickly for a while, but soon the poor design starts

to slow developers down. A developer spend time finding and fixing bugs instead of

adding new function. Changes take longer as developers try to understand the system

and find the duplicated code. New features need more coding as developers patch

over a patch that patches a patch on the original code base. A good design is essential

to maintaining speed in software development. Refactoring helps developers develop

software more rapidly, because it stops the design of the system from decaying. It

can even improve a design.

2.2.2 Refactoring Patterns to Code Clones

Fowelr says the best time to perform refactoring to code is when code is stinky, so

called bad smell. He chooses duplicated code as the best condition in the stink parade.

The following refactoring patterns are available for removing duplicated code from 72

refactoring patterns are written in Folwer’s book[2].

Extract Method

Extract method can be applied to code that is too complicate or long to understand

its purpose. It also can be applied to remove duplicated code that have the same

expression in two methods of the same class. Figure 2 illustrates an example of ap-

8

/012 3415678159:20;<=> ?@0;56AB
34156C?55>4:AD

EFG6>@H0;6H34156=5:I5?@> JK L5?@>AD
EFG6>@H0;6H34156=5:I?@0;56 JK ?@0;56AD

M

N012 34156OGG>6G:20;<=> ?@0;56AB
34156P>G;=6:AD

EFG6>@H0;6H34156=5:I5?@> JK L5?@>AD
EFG6>@H0;6H34156=5:I?@0;56 J K ?@0;56AD

M

/012 3415678159:20;<=> ?@0;56AB
34156C?55>4:AD

34156Q>6?1=G:?@0;56AD
M

N012 34156OGG>6G:20;<=> ?@0;56AB
34156P>G;=6:AD

34156Q>6?1=G:?@0;56AD
M

34156Q>6?1=G:20;<=> ?@0;56AB
EFG6>@H0;6H34156=5:I5?@> J K L5?@>AD
EFG6>@H0;6H34156=5:I?@0;56 JK ?@0;56AD

M

RSTUVS WTXSV

図 2: Example of extract method

YZ[\]^

_`ab`c`defg`hijk`l
_`amnohijk`l

gnj`
fppqr`sl`ntfu`
fppqr`hijk`l

YZ[\]^

gnj`

_`ab`c`defg`hijk`l
_`amnohijk`l

vwxyZ[

nl`ntfu`
gijk`l

_`ahijk`l

gijk`l

z{|}~{ �|�{~

図 3: Example of extract class

plying extract method to remove duplicated code. Before refactoring, two duplicated

statements are exist in two methods(printOwing() and printAssets()). But after

refactoring, duplicated statements are extracted as a new method(printDetails())

and the old statements are replaced by a caller statement of new method.

Extract Class

If class is too big to understand easily or complicated, extract class can be applied.

It also applies to similar methods or fields exists in the same class or unrelated

classes. Figure 3 illustrates an example of applying extract class to remove dupli-

cated code. After refactoring, a new class(Number) is created then a link from the

old(Person) is added to the new class. Moreover, duplicated parts in similar meth-

ods(getTelephoneNumber() and getFaxNumber()) are moved from the old class into

the new class.

9

����������

������������������

�������

������������

��������

�������������

�������

�����

�����

�������������

�������

��������

�������������

�����

����������

�������������

������������

� ¡¢£
¤¡¥ £

図 4: Example of extract superclass

Extract Superclass

Extract Superclass can be applied when two or more classes have similar features but

not having a common parent class. Figure 4 illustrates an example of applying extract

superclass to remove duplicated code. Method getTotalAnnualCost() in class Depart-

ment and Method getAnnualCost() in class Employee is similar. Method getName()

in class Department Employee is identical before refactoring. But after refactoring,

a super class(Party) is created and common similar features move to the superclass;

Method getName() are moved to the superclass by using Pull Up Method. Method

getAnnualCost() in super class has the same signature from Method getTotalAnnu-

alCost() in class Department and Method getAnnualCost() in class Employee in old

the old version. The difference is achieved by overiiding method getAnnualCost() in

each subclass.

Form Template Method

If a developer would like to merge two similar methods that perform similar steps

in the same order, yet the steps are different from subclasses into a superclass, form

template method can be used. In this case, A developer can move the similar methods

to the superclass and allow polymorphism to play its role in ensuring the different

steps to do their things differently. This kind of method is called a templated method.

Figure 5 illustrates an example of Form Template Method to remove duplicated code.

Before refactoring, subclass ResidentialSite and LifelineSite have similar but not the

10

¦§¨©ª§«© ¬§©

®¯°±²³³´µ³¯¶·¸¹º°

»©¼§½©«§¾ª ¬§©

®¯°±²³³´µ³¯¶·¸¹º°

¬§©

¦§¨©ª§«© ¬§©

®¯°±´¿¯¶·¸¹º°
®¯°À´Á¶·¸¹º°

»©¼§½©«§¾ª ¬§©

®¯°±´¿¯¶·¸¹º°
®¯°À´Á¶·¸¹º°

¬§©

®¯°±²³³´µ³¯¶·¸¹º°
®¯°±´¿¯¶·¸¹º°
®¯°À´Á¶·¸¹º°

ÂÃÄÅÆÇ ÅÈÉÇ Ê ËÄÌÍÎÉ Ï ÐÈÎÇ Ï ÑÒÓÔ
ÂÃÄÅÆÇ ÎÈÕ Ê ÅÈÉÇ Ï ÖÍÎÇÒ×ØÙËÚØ×Û Ï ÑÒÜÔ
ÐÇÎÄÐÌ ÅÈÉÇ Ý ÎÈÕÔ

ÂÃÄÅÆÇ ÅÈÉÇ Ê ËÄÌÍÎÉ Ï ÐÈÎÇÔ
ÂÃÄÅÆÇ ÎÈÕ Ê ÅÈÉÇ Ï ÖÍÎÇÒ×ØÙËÚØ×ÛÔ
ÐÇÎÄÐÌ ÅÈÉÇ Ý ÎÈÕÔ

Þßàáâß

ãàäßâ

ÐÇÎÄÐÌ åÇÎæÈÉÇØçÃÄÌÎèé Ý åÇÎ×ÈÕØçÃÄÌÎèéÔ

図 5: Example of form template method

êëìíîïëð ñðòóðííô

õö÷øùúö õö÷øùúö

ñïûìüýíí

ñðòóðííô

õö÷øùúö
ñïûìüýíí

êëìíîïëð

þÿ���ÿ ���ÿ�

図 6: Example of pull up method

11

����	
��

����������������

����������������

����	�

����������������

 !"#$! %"&!$

図 7: Example of parameterize method

'()*(

+,-./01
2-3.456701

8(9:*;<=:>=<?@(

+,-AB,CDB3/E,-./
3/.462B,CDB3/E,-./
7/,7-B,CDB3/E,-./

.4A+57/

,/75,6 6/F E,-./GBH.5HB74,07I-31J.4A+57/01

GHB33 K,2/,JJJ
245LH/ +,-./01M

245LH/ E,-AB,CDB3/E,-./N
245LH/ 3/.462B,CDB3/E,-./N
245LH/ 7/,7-B,CDB3/E,-./N
JJJJJJJJJJ

O

245LH/ 2-3.456701M
245LH/ E,-AB,CDB3/E,-./N
245LH/ 3/.462B,CDB3/E,-./N
245LH/ 7/,7-B,CDB3/E,-./N
JJJJJJJJJJ

O

PQRSTQ

URVQT

W

図 8: Example of replace method with method object

same method(getBillableAmount()). But after refactoring, identical signature are

moved into the superclass(Site) and the differecne is achieved by overiiding method

12

getBaseAmountt() and getTaxAmmount() in each subclass.

Pull Up Method

Pull up method can be applied to methods have the same body in subclasses. Figure

6 illustrates an example of pull up method to duplicated code. Before refactoring,

class Saleman and Enginer have identical method getName(). But after refactoring,

method getName() are moved to the common superclass(Employee).

Parameterize Method

If several methods do similar things but with different values contained in the method

body, replacing the separate methods with a single method that handles the varia-

tions by parameters, so called parameterize method is effective refactoring patterns.

Such a change removes duplicated code and increases flexibility, because programmer

can deal with other variations by adding parameters. Figure 7 illustrates an exam-

ple of earameterize method to remove duplicated code. Before refactoring, class

Employee has two methods fivePercentRaise() and tenPercentRaise() that do the

similar things but with different values contained in the method body. But after

refactoring, created method(raise(percentage) that uses a parameter.

Replace Method with Method Object

Replace method with method object can be applied to the a long method that uses

local variables in such a way that developer can not apply extract method. Figure 8

illustrates an example of replace method with method object to removed duplicated

code. Before refactoring, two methods(price() and discount()) use local variables

that can not extract method. But, after refactoring, all theses local variables into

fields on the new class(PriceCalculator).

13

3 Proposed Approach

This section discuss the approaches to investigate the characteristics of code clones that

were performed refactoring and its applied refactoring patterns. The approach consists

of the following steps: (1) get history of software projects from software repository. (2)

identify code clones that were performed refactoring from extracted files. (3) investigate

characteristics of code clones that were performed refactoring and its applied refactoring

patterns.

3.1 Definition

In this section, I present my own definition of terminologies in terms of code clones that

were performed refactoring. These definitions help to clarify my discussion of proposed

approach :

Clone Refactoring Refactoring activity that merge clone pair into a single method

Clone Refactoring Patterns Refactoring patterns that can be used to perform clone

refactoring. As described in Section 2.2.2, they are extract class, extract method,

extract superclass, form template method, parameterize method, pull up method, and

replace method with method object can be used to merge code clones into a single

method

3.2 Identify Clone Refactoring

To Identify clone refactoring, first, I detect methods that were performed refactoring

between two versions, previous and current versions, then identify clone pair that were

performed refactoring.

To detect methods that were performed refactoring, I use REF-FINDER, a refactoring

detection tool with high accuracy [10][8]. It takes decomposes given two program ver-

sions as a database of logic facts about code elements (packages, classes and interfaces,

methods, and fields), structural dependencies (containment, overriding relationships, sub-

typing relationships, method calls, and field accesses), and the content of code elements

(e.g., if-then-else control structures in a method-body). Using theses facts, it infers con-

crete refactoring instances by converting a template logic rule into a logic query, and then

invoking the query on the database using a Tyruba logic programming system[13]. The

following are template logic rules on clone refactoring patterns[10].

14

[Template Logic Rule 1] added type(newtFullName, newtShortName, pkg2)

∧ before type(tFullName, tShortName, pkg)

∧ after type(tFullName, tShortName, pkg)

∧ added field(fFullname, X, tFullname)

∧ added fieldoftype(fFullName, newtFullName)

∧ (move field(fShortName, tFullName, newtFullName)

∨ move method(mShortName, tFullName, newtFullName))

→ extract class(newtFullName, tFullName)

[Template Logic Rule 2] added method(newmFullName, newmShortName, tFullName)

∧ similarbody(newmFullName, newmBody, mFullname, mBody)

∧ after method(mFullName, X, tFullName)

∧ added calls(mFullName, newmFullName)

→ extract method(mFullName, newmFullName, newmBody, tFullName)

[Template Logic Rule 3] added subtype(tFullName, subtFullName)

∧ NOT(before type(tFullName, X, X))

∧ (move field(fShortName, subtFullName, tFullName)

∨ move method(mShortName, subTFullName, tFullName))

→ extract superclass(subtFullName, tFullName)

[Template Logic Rule 4] same body(calleeMFullName1, new mbody1, mFullName1, mbody1)

∧ same body(calleeMFullName2, new mbody2, mFullName2, mbody2)

∧ NOT(equals(mFullName1, mFullName2))

∧ NOT(equals(sub tFullName1, sub tFullName2))

∧ added method(mFullname, mShortName, super tFullName)

∧ deleted method(mFullName1, mShortName, sub tFullName1)

∧ deleted method(mFullName2, mShortName, sub tFullName2)

∧ added calls(mFullName, calleeMFullName)

∧ added inheritedmethod(calleemShortName, super tFullName, sub tFullName1)

∧ added inheritedmethod(calleemShortName, super tFullName, sub tFullName2)

∧ after method(calleeMFullName1, calleemShortName, sub tFullName1)

∧ after method(calleeMFullName2, calleemShortName, sub tFullName2)

∧ after method(calleeMFullName, calleemShortName, super tFullName)

∧ after subtype(super tFullName, sub tFullName1)

15

∧ after subtype(super tFullName, sub tFullName2)

→ form template method(super tFullName, sub tFullName1, sub tFullName2, mFullName)

[Template Logic Rule 5] deleted method(m1FullName, m1ShortName, tFullName)

∧ before parameter(m1FullName, params1, X)

∧ deleted method(m2FullName, m2ShortName, tFullName)

∧ before parameter(m2FullName, params2, X)

∧ NOT(equals(m1ShortName, m2ShortName))

∧ added method(newmFullName, newmShortName, tFullName)

∧ after parameter(newmFullName, newparams, X)

→ parameterize method(newmFullName)

[Template Logic Rule 6] move method(fShortName, tChildFullName, tParentFullName)

∧ before subtype(tParentFullName, tChildFullName)

→ pull up method(fShortName, tChildFullName, tParentFullName)

[Template Logic Rule 7] added type(tFullName, tShortName, pkg)

∧ added field(fFullName, fShortName, tFullName)

∧ added fieldoftype(fFullName, callingtFullName)

∧ added method(newmFullName, newmShortName, tFullName)

∧ after method(mFullName, mShortName, callingtFullName)

∧ deleted methodbody(mFullName, mBody)

∧ similarbody(newmFullName, newmBody, mFullName, mBody)

∧ added calls(mFullName, newmFullName)

→ replace method with method object(mFullName, tFullName)

Each template logic rule represents:

• Template Logic Rule 1 represents that an extract class] refactoring requires that

field fShortName or method mShortName is moved from class tFullName in the old

version to new class newtFullName in the new version and now field fFullname in

class tFullName is declared to be class newtFullName type.

• Template Logic Rule 2 represents that an extract method refactoring requires that

a new method newFullName’s body content newmBody is extracted from method

mFullName in the old version and that mFullName now calls newFullName.

16

• Template Logic Rule 3 represents that an extract superclass refactoring requires that

new superclass tFullName of class subtFullName is added in the new version and field

fShortName or method mShortName is moved from class subtFullName in the old

version to superclass tFullName in the new version.

• Template Logic Rule 4 represents that an form template method refactoring re-

quires that class super tFullName is a superclass of sub tFullName1 and sub tFull2

in the new version. Method mFullName, calleeMFullName is added in the class

super tFullName and mFullName calls calleeMFullName. A new method calleM-

FullName1 ’s body new mbody1 is extracted from method mFullName1 in the old

version and a new method calleMFullName2 ’s body new mbody2 is extracted from

method mFullName2 in the old version. Methods caleemShortName are inherited

by class sub tTullName1, sub tTullName2 from class super tFullName.

• Template Logic Rule 5 represents that an parameterize method refactoring requires

that similar method m1FullName and m2FullName have no parameter in the old

version. Method m1FullName and m2FullName are deleted and a new method

newmFullName is added in the new version.

• Template Logic Rule 6 represents that an pull up method refactoring requires that

class tParaentFullName is a supercalss of class tChildFullName and method fShot-

Name are moved from class tChildFullName in the old version to class tParentFull-

Name in the new version.

• Template Logic Rule 7 represents that an replace method with method object refac-

toring requires that a filed fFullName and methodmFullName are added in new class

newtFullName in a new version. A method newFullName’s body content newmBody

is extracted from method mFullName in the old version and mFullName now calls

newFullName.

Next, I identify code clones that were performed refactoring using the information of

REF-FINDER’s output. Developers sometimes merge low similarity code clones into a

single method after much thought. Figure 9 describes an example of merging low simi-

larity code clones into a single method. In figure 9, a code clone is created by copying

existing source code with modification and insertion of additional statement. However,

this modification and insertion make code clones difficult to be detected by token base

code clone detection tool(e. g. CCFinder[6]).

17

XYZ [\]^_`a b\c [\]^_`a

de fd g hi j
d k dlmn
doon

p

de fd q hi j
d k do r n

p

dst uvwxyz{fdst d| dst hij
de fd g hi j

d k dlmn
doon

p {}~{ j
d k do r n

p
z{t�zs d

p

�����������
����������

図 9: Example of merging low similarity code clones into a single method

To identify low similarity code clones, undirected similarity(usim)(i.e. a measurement

about the similarity of two sequences suggested by Mende et. al[9]) is used. usim

is defined by equation (1). It uses Levenshtein distance[12] that measure the minimal

amount of changes necessary to transform one sequence of items into a second sequence of

items. Each method that are performed refactoring is represented as normalized sequence

sfx = norm(fx). The normalization removes comments, line breaks and insignificant

white space. The resulting edit distance ∆fx, y = LD(sfx, sfy) then describes the num-

ber of items that have to be changed to turn method fxintointofy. Levenshtein distance

can be normalized to a relative value using the length of the corresponding sequence

lx = len(sfx).

usim (fx, fy) =
max (lx, ly)−∆fx, y

max (lx, ly)
× 100 (%) (1)

If usim value is over 40% between two methods, I define them as clone pair.

3.3 Measurement of Clone Characteristics

After identifying the clone pairs that were performed refactoring, I appliy following clone

metrics to investigate the characteristics of code clones are appropriate for performing

refactoring.

Similarity difference between clone pairs

Similarity measurement between two sequences, usim is used to identify code clones.

Moreover, it is used to measure similarity between clone pairs that were performed

18

clone refactoring. If usim value of clone pair is lower, it means clone refactoring is

performed to less similar clone pair, and if usim value of clone pair is higher, clone

refactoring is performed to more similar clone pair. This information helps developer

to perform clone refactoring . For instance, let us pretend that extract method is

mainly applied code clone with usim 50, if developers see clone pair with usim 50,

they will consider to perform extract method preferentially.

The length difference between clone pairs

This metrics informs length difference between clone pair that were performed clone

refactoring. If length difference between clone pair is lower, it means clone refactoring

is performed to similar size of clone pair, and if length difference between clone pair

is higher, it means that clone refactoring is performed to different size of clone pair.

This information also helps developer to perform clone refactoring. For instance, let

us pretend that extract method is mainly applied clone pair with 3 length difference,

if developers see clone pair with 3 length difference, they will consider perform extract

method preferentially y.

Class distance

Class distance represents the relationship of classes who contain clone pair. Class

distance gives information of which clone refactoring can be applied to the code

clones. For instances, code clones are existed in the same class, extract method

refactoring pattern is can be applied or code clones are distributed in subclasses

who have a common superclass, pull up method or form template method can be

applied. Therefore, information on class distance gives developers clue of selecting

clone refactoring patterns.

19

4 Case Study

I investigate the characteristic of the clone pairs that were performed refactoring as a

case study. This section describes the details on the case study and its result.

4.1 Target System

To investigate the characteristics of clone pairs that were performed refactoring, I should

choose subject software programs with reliable history information on refactoring activi-

ties. After all, I select jEdit, Columba, and Carol, the same projects that used in Prete’s

paper because their recalls and precisions are high enough. (Their overall precision and

recall 79% and 95% respectively). Moreover, I also use same as revision pairs as they

used in their paper because its refactoring information is reliable. I select 10 release pairs

from overall projects. The following are details on each project and selected revision pairs

correspond to each projects:

• jEdit1 is a mature programmer’s text editor written in Java. 2 release pairs(3.0-3.0.1,

3.0.2-3.1) are selected from this project.

• CAROL2 is a library allowing to use different Remote Method Invocation(RMI)

implementations written in Java. 2 release pairs(302-352, 352-449) are selected from

this project.

• Columba3 is an email client written in Java, featuring a user-friendly graphical inter-

face with wizards and internationalization support. 6 release pairs(62-63, 389-421,

421-422, 429-430, 430-480, 480-481) are selected from this project.

4.2 Result

This section describes results of the investigation. I detect 43 refactoring patterns from

overall subject projects. Table 1 shows the number of identified clone pairs and detected

refactoring on each refactoring pattern. As described in table 1, only 5 refactoring pat-

terns are detected from overall clone refactoring pattern. In terms of clone refactoring,

only 4 refactoring patterns(extract method, extract superclass, form template method, re-

place method with method object) are detected. Figure 10 explains the number of identified
1http://jedit.org/
2http://carol.ow2.org/index.html
3http://sourceforge.net/projects/columba/

20

表 1: Number of identified clone pairs and detect refactoring on each refactoring pattern

Refactoring Patterns #Identified Clone Pairs #Detected Refactoring

Extract Class - -

Extract Method 11 25

Extract Superclass 1 12

Form Template Method 2 5

Parameterize Method - -

Pull Up Method - 3

Replace Method with Method Object 17 43

refactoring methods in terms of clone refactoring. replace method with method object is

most frequently applied refactoring pattern between the all refactoring patterns. The sec-

ond frequently occurred clone refactoring patterns is extract method, next is form template

method, and the final is extract superclass.

������� ������

������� ����������

���� ������� ������

��������� ¡� ������

���� ¢� ������

£������ ������ ¤ ��

������ ¥¦§���

図 10: Number of identified refactoring methods

4.2.1 Difference on Similarity

Similarity differences on clone pairs that are performed clone refactoring are shown in

Figure 11. As I mentioned in Section 3.3, I use usim to measure similarity between two

sequences. If a pair of code fragments whose usim value is over 40, I define them as code

clone, the minimum usim value of code clones is 40. Lower usim value represents that the

21

similarity between a clone pair is lower. In contrast, higher usim value represents that the

similarity between a clone pair is higher. The usim value of extract method pattern, replace

method with method object pattern are low. and extract superclass pattern, form template

method pattern are high. It means that extract method pattern, replace method with

method object pattern are applied to the lowly similar clone pairs and extract superclass

pattern, form template method pattern are applied to the highly similar clone pairs.

¨

©

ª

«

¬

¨

©

®¯°®± ²¯°²± ³¯°³± ´¯°´± µ¯°µ± ±¯°¶¯¯

·¸¹º»¼¹ ½¾¹¿ÀÁ ·¸¹º»¼¹ ÂÃÄ¾º¼Å»ÆÆ

ÇÀºÈ É¾ÈÄÅ»¹¾ ½¾¹¿ÀÁ Ê¾ÄÅ»¼¾ ½¾¹¿ÀÁ ËÌ¹¿ ½¾¹¿ÀÁ ÍÎÏ¾¼¹

図 11: The sequence similarity between each clone refactoring pattern

4.2.2 Difference on a Length

Length difference on clone pairs that are performed clone refactoring are shown in

Figure 12. As I mentioned in Section 3.3, lower length difference represents that the

length difference between the clone pairs are little. In contrast, higher length difference

represents that the length difference between the clone pairs are large. Length difference

of extract method pattern, extract superclass pattern, and form template method pattern

are low, and replace method with method object is various. It means that extract method

pattern, extract superclass pattern, and form template method pattern are applied to

clone pairs with little length difference, and replace method with method object is appled

to various different length of the clone pairs.

22

Ð

Ñ

ÒÐ

ÒÑ

ÓÐ

ÓÑ

ÔÕÖ×ØÙÖ ÚÛÖÜÝÞ ÔÕÖ×ØÙÖ ßàáÛ×ÙâØãã

äÝ×å æÛåáâØÖÛ ÚÛÖÜÝÞ çÛáâØÙÛ ÚÛÖÜÝÞ èéÖÜ ÚÛÖÜÝÞ êëìÛÙÖ

図 12: The length difference between each clone refactoring pattern

4.2.3 Class distance

Between detected refactoring patterns, only replace method with method object pattern

can be applied to code clones between any classes because it has no condition of location

of code clones before performing refactoring. Therefore, I investigate class distances on

replace method with method object pattern. The class distances of replace method with

method object pattern are shown in Figure 13. In replace method with method object

pattern, clone pairs that are contained in the same package are most applied.

í

î

ï

ð

ñ

òí

òî

òï

òð

óôõö ÷øôùù óôõ úôûüôýö þÿ�ö�ù

図 13: The class distance on replace method with method object

23

5 Related work and discussion

Jiang et al.[4] and Kapser et al.[7] pointed out that code clone detection tools using

parameterized matching detected a lot of false positives. Jiang et al.[4] used textual

filtering techniques to remove false positives from CCFinder’s output. They removed

clone papers code clones whose textural similarly falls below a certain threshold. Kapser

et al.[7] proposed the following techniques to remove false positives from the output of

their token-based clone detection tool.

• identifier names are not parameterized outside of methods.

• simple method calls are matched only if Levenshtein Disitance of those method

names is small.

• logical structures (e.g., switch statements, if-else block) are matched if 50% of tokens

in these structures are identical.

There is the possibility to make our method more effective by applying the filtering tech-

niques proposed by Jiang et al. and Kapser et al. as the preprocessor or the postprocessor

of our method.

CCFinderX[5] developed by Kamiya provides the metric TKS(S) that means the num-

ber of token types in code fragments belonging clone set S. The metric TKS is effective to

remove clone sets not in need of developer’s investigation (e.g., consecutive variable decla-

rations) because those clones tend to have small number of token types. This means that

there is the possibility of improving the effective of our method by use of the metric TKS

in addition to the use of the metric RNR. However, clone sets with low RNR value include

a lot of consecutive parts. They tend to have small number of token types and low TKS

value. This correlation means that the use of both TKS and RNR are not significantly

effective.

Balazinska et al. and Higo et al. characterize clone sets according to the ease of refac-

toring. Balazinska [1] et al. characterize clone sets by analyzing the following information:

• differences among the code fragments belonging to a clone set

• dependencies between the code fragment belonging to a clone set and its surrounding

code

24

Higo [3] et al. proposed two metrics to represent the average number of the externally

defined variables respectively referenced and assigned in the code fragments belonging to

a clone set. The combination of our method and the techniques focusing on the ease of

refactoring has the possibility to improve the effectiveness of clone set filtering.

25

6 Conclusion

This study investigates the characteristics of clone pairs that were performed refactoring

to investigate the characteristics of code clones are appropriate for performing refactoring

and which refactoring pattern is preferentially necessary for a tool support clone refactor-

ing. I investigate 10 revision pairs from 3 Java open source projects using REF-Finder to

detect refactoring and usim to identify code clones. I found characteristics of clone pairs

that were performed(e.g. in case of replace method with method object is the most fre-

quently applied refactoring pattern and they are applied to various length different clone

pairs with little similarity in the same package)

As future work, I will investigate more revision pairs and more Java software projects.

Moreover, I will use more metrics(e.g. cohension, cyclomatic complexity) to investigate

the characteristics of clone pairs that were performed refactoring more accurately.

26

Acknowledgments

First and foremost, I would like to thank Professor Katsuro Inoue for giving me the

opportunity to work with him. He provided advices and important direction to my thesis

work. In addition, I am very grateful to Associate Professor Makoto Matsushita for his

helpful comments on this study. I would like to express my gratitude to Assistant Professor

Takashi Ishio and Yuki Manabe for their valuable comments and helpful criticism on this

thesis.

Especially, I would like to express my gratitude to Assistant Professor Norihiro Yoshida

in Nara Institute of Science and Technology for his comments, criticisms and advices on

this thesis. I also would like to express my gratitude to Assistant Professor Higo Yoshiki

in Kusumoto Laboratory for his valuable comments. Many Thanks to lots of friends in

the Department of Computer Science, especially students in Inoue Laboratory.

And finally, I would like to express my gratitude to members of Yodogawa Rotary Club

for their supports.

27

参考文献

[1] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis. Advanced

clone-analysis to support object-oriented system refactoring. In Proc. of WCRE 2000,

pp. 98–107, 2000.

[2] M. Fowler. Refactoring: improving the design of existing code. Addison Wesley, 1999.

[3] Yoshiki Higo, Shinji Kusumoto, and Katsuro Inoue. A metric-based approach to iden-

tifying refactoring opportunities for merging code clones in a Java software system.

J. Softw. Maint. Evol.: Res. Pract., Vol. 20, pp. 435–461, 2008.

[4] Z. M. Jiang and A. E. Hassan. A framework for studying clones In large software

systems. In Proc. of SCAM 2007, pp. 203–212, 2007.

[5] T Kaimiya. In http://www.ccfinder.net/doc/10.2/en/tutorial-ccfx.html.

[6] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-linguistic token-based

code clone detection system for large scale source code. IEEE Transactions on Soft-

ware Engineering, Vol. 28, No. 7, pp. 654–670, 2002.

[7] C. J. Kapser and M.l W. Godfrey. “Cloning considered harmful” considered harmful:

patterns of cloning in software. Empir Software Eng, Vol. 13, pp. 645–692, 2008.

[8] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit. Ref-Finder: a refactoring re-

construction tool based on logic query templates. In Proc. of ESE/FSE 2010, pp.

371–372, 2010.

[9] T. Mende, R. Koschke, and F. Beckwermert. An evaludation of code similarity iden-

tification for the grow-and-prune model. Journal of Software Maintenance, Vol. 21,

No. 2, pp. 143–169, 2009.

[10] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. Template-based reconstruction

of complex refactorings. In Proc. of ICSM 2010, pp. 1–10, 2010.

[11] C. K. Roy and J. R. Cordy. A survey on software clone detection research. Technical

Report, Vol. 541, , 2007.

[12] Levenshtein VI. Binary codes capable of correcting deletions, insertions, and rever-

sals. Soviet Physics Doklady, Vol. 10, pp. 707–710, 1966.

28

[13] K. D. Volder. Type-oriented logic meta Programming. PhD thesis, The University of

British Columbia, 1998.

[14] S. W. L. Yip and T. Lam. A software maintenance survey. In Proc. of APSEC 1994,

pp. 70–79, 1994.

29

