
修士学位論文

題目

Empirical Studies on License Compliance and

Copyright Inconsistency Risks in Open Source Software

指導教員

井上 克郎 教授

報告者

仇　実

平成 30年 2月 7日

大阪大学 大学院情報科学研究科

コンピュータサイエンス専攻 ソフトウェア工学講座

平成 29年度 修士学位論文

Empirical Studies on License Compliance and Copyright Inconsistency Risks in Open

Source Software

仇　実

内容梗概

Open source software (OSS) is computer software whose source code can be reused under

some particular terms and conditions. These terms and conditions are usually described

by one or more software licenses written in the header part of the source files. In addition,

the name of authors, also called copyright holders, are usually included in the header part

of source file as well.

A license may be incompatible with another one according to the terms and conditions.

Making software by reusing OSS software may cause license compliance risks if the devel-

opers did not notice the license of reused OSS software. Meanwhile, the inconsistency of

main contributor and copyright holder may also potentially cause legal risks.

In this paper, we propose a method to detect license compliance risk and conduct an

empirical study on NPM, a JavaScript-based software ecosystem. For copyright incon-

sistency risks, we select Linux kernel as our target to find the files of which the main

contributors are inconsistent with copyright holders. We also conduct an evolutionary

study to understand the change of copyright inconsistency risks in Linux kernel. In this

study, we propose a method to detect license compliance risks and copyright inconsistency

risks. Our result shows that although the proportion of packages detected as having license

compliance risk is quite low, the reuse of packages licensed under the copyleft license is still

more likely to cause license compliance risk. We also reveal the prevalence of copyright

inconsistency risks.

主な用語

Open source software

Software license

Software copyright

1

目 次

1 Introduction 4

1.1 Open source license . 4

1.2 Copyright holder . 5

1.3 Structure of this paper . 6

2 License compliance risk 7

2.1 License compliance . 7

2.2 Definition . 9

2.3 Example . 9

2.4 Categorization . 11

3 Detection of license compliance risk 13

3.1 Problems . 13

3.2 Data collection . 13

3.3 Method . 14

3.4 Examples . 18

4 Empirical Study on License Compliance Risk in npm 20

4.1 Research Question . 20

4.2 Results . 20

4.3 Answering RQs . 23

5 Copyright Inconsistency Risk 24

5.1 Background . 24

5.2 Definition . 25

5.3 Example . 25

6 Detection of Copyright Inconsistency Risk 27

6.1 Method . 27

6.2 Threats to Validity . 29

7 Empirical Study on Copyright Inconsistency Risk in Linux kernel 31

7.1 Research Question . 31

7.2 Result . 31

7.3 Answering the RQ . 32

2

8 Related Work 33

8.1 Software License . 33

8.2 License Compliance . 33

9 Conclusion and future work 35

謝辞 37

参考文献 38

3

1 Introduction

Software reuse has long been proved to be a good method to increase software produc-

tivity [11, 12, 2]. As a practice, reusing open source software (OSS) has become more and

more popular. The reused OSS software is usually called the dependencies of the soft-

ware under development. When developers reusing OSS software, they should pay special

attention to open source license and software copyright to prevent legal risk [19].

1.1 Open source license

Open source license describes the terms and conditions when OSS software is used,

modified and shared. OSS software should be distributed under one or multiple open

source licenses so that it can be reused by others. These licenses are usually included

in the header comments of source files. To Standardize the use of open source licenses,

the Open Source Initiative (OSI) determines the definition of open source licenses and

publishes the list of all approved licenses1.

Many studies in software engineering have been done on software license. Some effective

approaches and tools are proposed to identify the license of source code files automatically

[6].

Just as the definition of open source license says, OSS software can only be reused

as long as the particular terms and conditions are satisfied. Therefore, the developed

software should satisfy all terms and conditions in licenses of all its dependencies. In

other words, the developed software should select a license which is compatible with the

licenses of all dependencies. If the selected license is incompatible with any license of its

dependencies, potential legal risks may occur. Here we define this potential legal risk as

license compliance risk.

With the rise of user-contributed OSS ecosystems, judging whether the terms and con-

ditions are satisfied or not has become a serious issue. OSS ecosystem consists of software

projects that are developed and evolve together in a shared environment [10]. User-

contributed OSS ecosystem is an ecosystem where software projects are contributed by its

users.

In a user-contributed OSS ecosystem, it’s much more difficult to judge whether the

selected license is compatible with any license of its dependencies or not. To address this

issue, we proposed an approach to detect license compliance risks of software projects in

1https://opensource.org/licenses/alphabetical

4

such OSS ecosystems. We are also interested in the current situation of user-contributed

OSS ecosystems.

We select npm2 as the target in our research. npm serves as a large repository of

JavaScript-based software packages. It hosts over 450,000 JavaScript packages and is

the largest JavaScript ecosystem, with millions of packages being installed from the npm

repository on an everyday basis. We also conduct an empirical study on npm with our

proposed method to understand the prevalence of license compliance risk. We discovered

that the packages detected as having direct or indirect dependency risk take only a small

portion of all the packages in npm. We reveal that reuse of packages licensed under the

copyleft license is more likely to cause license compliance risk. We also discovered some

characteristics of license compliance risk in npm.

The contributions of this study are:

1. We proposed an approach to detect the license compliance risk of software projects

in OSS ecosystems, which can expose all licenses in dependencies incompatible with

the license of detected software projects.

2. We applied our method to npm and conducted an empirical study to understand the

current situation of the license compliance risk in user-contributed OSS ecosystem.

1.2 Copyright holder

Software copyright is a special case of copyright, which is used to prevents the unautho-

rized copying of software. OSS software is also protected by software copyright. Software

copyright is written in the header part of source code as well. However, since the OSS soft-

ware is usually contributed by more than one contributors, it’s very difficult to judge who

are the real copyright holders. In other words, there is no accurate definition of copyright

holders. Could any contributor be a copyright holder even they contributed only a few

lines of code? Could a developer claim himself as a copyright holder even if his copyright

information is not included in the header part of the source code?

Actually, there are some real-world legal cases related to copyright. Recent years, some

contributors of Linux kernel3 complained about some companies. Those companies have

to compensate the contributors because they didn’t obey the terms and conditions of

copyright. Here comes a problem, how companies judge whether these developers are

2https://www.npmjs.com
3https://github.com/torvalds/linux

5

the real copyright holders as what they have declared? On the one hand, the copyright

holders whose information are written in the header part of source code are usually treated

as the real copyright holders; on the other hand, some main contributors who contributed

the large part of source code should also be regarded as copyright holders according to

the common sense even their information are not written in the header part of source

code. Therefore, the inconsistency between the declared copyright holders and the main

contributors has become a risk. It makes companies or developers not able to recognize

the real copyright holders when they reuse the OSS software.

In this study, we propose an approach to detect the copyright inconsistency risk, known

as the inconsistency between the declared copyright holders and the main contributors.

Then we applied our approach in Linux kernel and conduct an empirical study to under-

stand the prevalence of copyright inconsistency risk in OSS projects. The result shows

that the proportion of source code files having the copyright inconsistency risk is quite

high. Then with an analysis of some source code files having the copyright inconsistency

risk, we discovered that there are some reasons behind the copyright inconsistency risk in

Linux kernel.

The contributions of this study are:

1. We proposed an approach to detect the copyright inconsistency risk of software

projects in OSS ecosystem.

2. We applied our method to Linux kernel and conducted an empirical study to under-

stand the current situation of the copyright inconsistency risk in user-contributed

OSS ecosystem.

1.3 Structure of this paper

This paper is organized as follows. Section 2 describes background on license compliance

and definite license compliance risk. Section 2 also shows some examples of packages with

license compliance risk. Section 3 introduces our method of detecting license compliance

risk. An empirical study with this method is described in Section 4. Section 5 describes

the background of copyright and the definition of copyright inconsistency risk. Section

6 introduces our method of detecting copyright inconsistency risk, followed by section 7

with an empirical study with this method and the discussion of the results. Related work

is described in Section 8, after which section 9 concludes this paper and points out the

future work.

6

2 License compliance risk

2.1 License compliance

A software license permits a software to be reused under some terms and conditions.

An open source license is a software license that follows Open Source Definition4 and is

approved by Open Source Initiative. A software license is written in the header part of

source code. Here is an example of a license statement taken from grunt5 package in npm,

which states that the file is under the MIT license:

[...]

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

[...]

Open Source Initiative does not only determine the definition of open source license

but also publish the list that includes all approved licenses are available. Open Source

Initiative also declares that the following OSI-approved licenses are popular and widely

used among all licenses6:

Apache License 2.0

BSD 3-Clause "New" or "Revised" license

BSD 2-Clause "Simplified" or "FreeBSD" license

GNU General Public License (GPL)

GNU Library or "Lesser" General Public License (LGPL)

MIT license

Mozilla Public License 2.0

Common Development and Distribution License

Eclipse Public License

To definite license compliance risk, we should first show how a license is not compatible

with another one. Licenses can be basically grouped into two types - permissive license and

4https://opensource.org/definition
5https://www.npmjs.com/package/grunt
6https://opensource.org/licenses

7

copyleft license. Some examples of the permissive license are MIT License, BSD licenses,

Apple Public Source License and Apache license. While GNU General Public License is the

typical examples of the copyleft ones. When a developed OSS software reuses another OSS

software, if the reused OSS software is licensed under a permissive license, the developed

OSS software does not need to open its source code. While if the reused OSS software is

licensed under a copyleft one, the developed OSS software is enforced to open its source

code. Usually, a permissive license is not compatible with a copyleft one. Here is an

example: The following texture is a part of Apache-2.0 license:

[...]

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

[...]

While GPL-2.0+ license says:

[...]

This program is free software; you can redistribute it

and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation; either

version 2, or (at your option) any later version.

[...]

According to the terms of GPL-2.0+ license, if an OSS software licensed under Apache-

2.0 license reuse an OSS software licensed under GPL-2.0+ license, an illegal reuse occurs

since OSS software licensed under GPL-2.0+ license can only be redistributed and/or

modified under the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2, or (at your option) any later version.

Note that some licenses share the same name but with different versions. An example

is GNU General Public License. GNU General Public License has versions 1, 2 and 3.

Each version has different terms and conditions. According to these different terms and

conditions, three versions are not compatible with each other. Here is an example:

GPL-3.0+ license says:

8

[...]

This program is free software: you can redistribute it

and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation; either

version 3 of the License, or (at your option) any

later version.

[...]

Although GPL-2.0+ license and GPL-3.0+ license are grouped under the same name, it’s

obvious that they are not compatible with each other. After understanding how a license

is not compatible with another one, we introduce our definition of license compliance risk

and give some examples of license compliance risks we have found in npm.

2.2 Definition

License compliance risk refers to the situation that the license of an OSS software is not

compatible with the license of its dependency.

2.3 Example

By analyzing npm, we observed some cases of license compliance risk.

The first one is nodeos-bootfs7 package, which reuses another package called genfatfs8.

nodeos-bootfs package declares its license as MIT license in meta file:

[...]

"author": "Jesus Leganes Combarro ’piranna’ <piranna@gmail.com>",

"license": "MIT",

"dependencies": {
"nodeos-cross-toolchain": "^1.0.0-RC3.0",

"download-manager": "^0.1.3",

"genfatfs": "^1.0.3"

},
[...]

While genfatfs package declares its license as GPL-2.0 license in the same way:

[...]

"contributors": [

"Jesus Leganes Combarro ’piranna’ <piranna@gmail.com>"

],

"license": "GPL-2.0",

7https://www.npmjs.com/package/nodeos-bootfs
8https://www.npmjs.com/package/genfatfs

9

Figure 1: The dependency chain of cstar package.

"bugs": {
"url": "https://github.com/NodeOS/genfatfs/issues"

},
[...]

Because MIT license is not compatible with GPL-2.0 license, nodeos-bootfs package

is reported as having license compliance risk.

Another example is cstar9 package. Different from nodeos-bootfs package, cstar

package declares its license as MIT license:

[...]

"author": "mark busenitz",

"license": "MIT",

"bugs": {
"url": "https://github.com/mucbuc/cstar/issues"

},
[...]

This license is compatible with licenses of all cstar package’s dependencies. But by

observing the dependency chain of cstar package in Figure 1, another package called

traverjs10 is also reused by cstar package. traverjs package is also licensed under

GPL-2.0 license:

[...]

"author": "mbusenitz",

"license": "GPL-2.0",

"bugs": {
"url": "https://github.com/mucbuc/traverjs/issues"

},
[...]

9https://www.npmjs.com/package/cstar
10https://www.npmjs.com/package/traverjs

10

It is obvious that MIT license is not compatible with GPL-2.0 license, so cstar package

is also reported as having license compliance risk.

The examples above are all license compliance risks at the package level. However,

license compliance risk can also occur at file level. Here is an example. hulq11 package is

licensed under Apache-2.0 license:

[...]

"author": "Lucas Chain",

"license": "Apache-2.0",

"dependencies": {
"chalk": "^1.1.0",

"gulp": "^3.9.0",

[...]

The source code files of hulq package include a file called tap-driver, of which the license

is written in the header part of source code:

[...]

Copyright (C) 2011-2013 Free Software Foundation, Inc.

#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2, or (at your option)

any later version.

[...]

tap-driver file is licensed under GPL-2.0+ license. Since Apache-2.0 license is not com-

patible with GPL-2.0+ license, this case is also regarded as license compliance risk.

2.4 Categorization

Based on the analysis of above examples, we categorize all license compliance risks into

three types:

1. Direct dependency risk:

The license of an OSS software is not compatible with the license of its direct de-

pendency.

2. Indirect dependency risk:

The license of an OSS software is not compatible with the license of one OSS software

in its dependency chain.

11https://www.npmjs.com/package/hulq

11

3. Self risk:

The license of an OSS software is not compatible with one source code file of OSS

software itself.

12

3 Detection of license compliance risk

3.1 Problems

It is difficult to detect license compliance risk of an OSS software in user-contributed

Open Source Software (OSS) ecosystem. The following aspects are some main challenges:

1. OSS software in user-contributed OSS ecosystem usually evolves frequently, because

of which one OSS software usually reuse another one of old version instead of the

latest one.

2. Software reuse is very popular in user-contributed OSS ecosystem. As a result, an

OSS software has a high probability of having a deep and complex dependency chain.

3. The license of an OSS software in user-contributed OSS ecosystem is usually written

in a license file or recorded in the meta file. But the same license is usually written

in different terms. For example, both GPL-2.0 and GPL version 2 refer to the same

license.

4. These challenges make the detection of license compliance risk a difficult and complex

problem.

3.2 Data collection

We select npm as our target ecosystem to detect license compliance risk. npm serves as

a large repository of JavaScript-based software packages. It hosts over 450,000 JavaScript

packages to become the largest software ecosystem, with millions of packages being in-

stalled from the npm repository on an everyday basis. As shown in Figure 2, when a

package is installed from npm, those packages which are in the dependency chain of this

package are also installed and included into the source code of the project. This is the

mechanism of software reuse in npm.

In the first step, we need to collect empirical data that represents popularity and other

main software ecosystem factors for npm. Table 1 shows a summary of collected npm

packages. The observation period is from October 1st, 2010 to April 7th, 2017, and all

data we collected only cover this range as well. At last, we collect 419,708 packages. We

end up with 419,708 packages in total.

13

Figure 2: The effect of dependencies on downloads in npm. When package A is installed,

package B and C are downloaded at the same time.

Table 1: Summary Statistics of the collected dataset.

Dataset statistics

observation period 2010-Oct to 2017-Apr

packages 419,708

3.3 Method

To address the challenges mentioned, our method is divided into 5 steps:

1. Build the license dictionary

As we mentioned, the same license is usually written in different terms by different

developers. Take GPL-2.0 license for an example. The common style is GPL-2.0,

but we find a lot of styles of writing by observing the licenses written in the meta

file of packages in npm, such as GPL-2, GPLv2, GPL 2, GNU GPL-2.0, GPL version

2, etc. All these terms refer to GPL-2.0 license. To detect license compliance risk,

all these terms should be classified into a normal one. We name this classification

as table license dictionary.

To build the license dictionary, we first select 19 popular licenses as keys. Note that

the following detection is also only conducted on these licenses. All our selected

licenses are listed as follows:

Public Domain

MIT and X11 License

ISC License

Apache-2.0 (Apache License 2.0)

BSD-3-Clause (2-clause BSD License)

BSD-2-Clause (3-clause BSD License)

MPL (Mozilla Public License) family (MPL-1.0, MPL-1.1, MPL-2.0)

14

GPL-2.0 (GNU General Public License version 2) and GPL-2.0+

GPL-3.0 (GNU General Public License version 3) and GPL-3.0+

LGPL-2.1 (GNU Lesser General Public License version 2.1) and LGPL-2.1+

LGPL-3.0 (GNU Lesser General Public License version 3.0) and LGPL-3.0+

AGPL-3.0 (GNU Affero General Public License version 3)

We collect all licenses written in the meta file of packages in npm and drop the dupli-

cate one. Then we use regular expression matching to do a preliminary classification.

Regular expression matching success in classifying quite a part licenses. Then we

manually check the results and move the license which is wrongly classified into the

right one. For the licenses which can’t be matched by regular expression, we man-

ually classified them into the right group. For those which is not in the selected

19 popular licenses, we manually classify them into a special group called unknown

license.

In this way, we succeed in building the license dictionary including 19 popular li-

censes, with which we can transform all kinds of style of writing of a license into a

normal one.

2. Build the software evolutionary dataset

OSS software in user-contributed OSS ecosystem usually evolves frequently. With

the evolution of software, source code, license, and dependencies are also changing.

However, an OSS software does not always reuse the latest version of its depen-

dencies, thus deciding the proper version of dependencies becomes important. To

accelerate the detection, we build the software evolutionary dataset, in which the

licenses and dependencies with licenses of all versions of every package in npm are

recorded.

We first use the public API12 of npm to get the metadata of all versions of packages.

Then for licenses, we normalize them according to the license dictionary we built

before. For dependencies, we list all dependencies and decide the proper version

and its license for each dependency. Note that npm use semantic versioning standard

to manage versions. The first release should start from 1.0.1. After this, changes

should be handled according to Table 213. Developers can choose versions for the

dependencies in some rules. Table 3 shows some examples for choosing version 1.0.1

for a dependency.

12https://www.npmjs.com/-/all
13https://docs.npmjs.com/getting-started/semantic-versioning

15

Table 2: The rules of how changes should be handled in npm.

CODE STATUS STAGE RULE EXAMPLE

First Release New Product Start with 1.0.0 1.0.0

Bug fixes, other minor

changes

Patch Release Increment the third digit 1.0.1

New feature that don’t break

existing features

Minor release Increment the middle digit 1.1.0

Changes that break backward

compatibility

Major release Increment the first digit 2.0.0

Table 3: Examples of how to specify the ranges.

TYPE EXAMPLE

Patch releases 1.0 or 1.0.x or 1.0.1

Minor releases 1 or 1.x or 1̂.0.1

Major releases * or x

After we get normalized license and dependencies with the proper version of all

versions of a package, we can build software evolutionary dataset for packages in

npm. The software evolutionary dataset includes information of versions, licenses,

and dependencies.

3. Build license compatibility network

To specify the compatibility between two licenses, a license compatibility network is

built. Our license compatibility network is based on license compatibility network

created by David A. Wheeler14 which is shown in Figure 3. Each arrow denotes a one-

directional compatibility. But to detect the most serious license compliance risk, we

assume that the four permissive licenses, including Public Domain license, MIT/X11

license, ISC license, BSD family license and Apache-2.0 license, are compatible with

each other and have no license compliance risk. Our detection only detects the

incompatible relationship in this license compatibility network.

4. Detect direct and indirect dependency risk

14https://www.dwheeler.com/essays/floss-license-slide.html

16

Figure 3: License compatibility network.

Since we have built the software evolutionary dataset and the license compatibility

network, detecting direct and indirect dependency risk becomes possible. For a

package in npm, we first build a dependency chain tree for it. Every direct or indirect

dependency in this dependency chain tree is attached with its license. Then we detect

if the license of this package is compatible with the licenses of direct and indirect

dependencies in this dependency chain tree. At last, we report the license compliance

risk we found in the detection. To accelerate this step, we also use some strategies

such as preliminary screening the packages having a high possibility of having risks

and select licenses for packages which never change its license in advance.

5. Detect self risk

In this detection, we want to detect if a license of a package is not compatible with

one source code file of this package. To do this detection, we rely on npm to install

the detected package. By this way, we get the actual source code when we reuse

the detected package. Note that we also get the needed source code of direct and

indirect dependencies at the same time. Then we adopted ninka to detect the license

of source files. Ninka is a sentence-based license detection tool which can identify

110 different licenses with 93% accuracy in a quite short time [4]. Note that ninka

reports UNKNOWN in case that a license is found but not recognized. Another

special result None is reported in case that the source file has no license. The style

of writing of license reported by ninka is different from our normalized one, so we

do a transformation and detect if the license of this package is compatible with

the licenses of all source code files of this package. At last, we report the license

compliance risk we found in the detection.

17

Figure 4: A dependency chain of linked-data-reactor package.

3.4 Examples

In this section, we show some examples of packages detected as having license compliance

risks in the detection.

1. Direct dependency risk:

linked-data-reactor15 package is detected as having direct dependency risk. Fig-

ure 4 shows a dependency chain in the dependency tree of this package. The latest

version of linked-data-reactor package is 0.9.72, released on March 31, 2017. This

version of linked-data-reactor depends on the latest version of a package called

wicket16. The latest version of wicket is 1.3.2, released on June 4, 2016. Since

the version 0.9.72 of linked-data-reactor package is licensed under Apache-2.0

license while the latest version of wicket is licensed under GPL-3.0 license, a di-

rect dependency risk is detected because of the incompatibility between Apache-2.0

license and GPL-3.0 license.

2. Indirect dependency risk:

mucbuc-filebase17 package is detected as having direct dependency risk. Fig-

ure 5 shows a dependency chain in the dependency tree of this package. The

latest version of mucbuc-filebase package is 0.0.4, released on April 31, 2017.

This version of mucbuc-filebase depends on the latest version of a package called

walk-json18. The latest version of walk-json is 0.0.2, released on January 22,

2017. mucbuc-filebase package is licensed under ISC license while walk-json is

licensed under MIT license. ISC license and MIT license are compatible with each

other. But walk-json depends on a package called traverjs19. The depended

version of traverjs package is licensed under GPL-2.0 license, with which both

15https://www.npmjs.com/package/linked-data-reactor
16https://www.npmjs.com/package/wicket
17https://www.npmjs.com/package/mucbuc-filebase
18https://www.npmjs.com/package/walk-json
19https://www.npmjs.com/package/traverjs

18

Figure 5: A dependency chain of mucbuc-filebase package.

walk-json package and walk-json package are not compatible. For walk-json

package, traverjs package will cause a direct dependency risk. While for mucbuc-filebase,

traverjs package will cause an indirect dependency risk.

3. Self risk:

An example of packages having self risk is ncmb-cli20 package. ncmb-cli pack-

age is licensed under MIT license. When a developer downloads this package with

npm, a source code file called sqlparser.pegjs can be found in the directory /ncmb −
cli/nodemodules/node − sqlparser/peg/. Ninka identifies the license of this file as

GPL-2.0 license. Since GPL-2.0 license is not compatible with MIT license, a self

risk is detected.

20https://www.npmjs.com/package/ncmb-cli

19

4 Empirical Study on License Compliance Risk in npm

OSS ecosystems consist of software projects that are developed and evolve together in

a shared environment [10]. Among all kinds of OSS software ecosystems, user-contributed

OSS ecosystem is the one of which software projects are contributed by users. With the

rise of user-contributed OSS ecosystem, reuse of abundant OSS software becomes more

and more popular. At the same time, the risks caused by license compliance have become

a serious issue. In this section, we set npm as our target to do a large-scale empirical

study to understand the prevalence of license compliance risk. npm is the largest software

ecosystem, hosting over 450,000 JavaScript packages. Millions of packages are installed

from the npm repository on an everyday basis. The popularity of npm makes npm a good

target to conduct our empirical study.

4.1 Research Question

To understand the prevalence of license compliance risk, we want to know what type

of common license compliance risks are in npm and how they appear. Based on these

questions, we set our research question as follows:

• RQ1 What is the proportion of packages with license compliance risk in npm?

• RQ2 Is the reuse of packages licensed under the copyleft license more likely to cause

license compliance risk?

• RQ3 Does transitive dependency have an impact on the occurrence of license com-

pliance risk?

• RQ4 What are the characteristics of license compliance risk at file level?

4.2 Results

To answer RQ1, we first apply our method of detecting direct and indirect dependency

risks to all packages we collected in npm. As a result, only 2,704 packages are detected as

having direct or indirect dependency risk out of 419,708 packages. The proportion is only

0.644%, which is very different from what we have expected. To ascertain the reason, we

count the proportion of the selected licenses in npm. Figure 6 and Table 4 show the result.

The result shows that the permissive licenses take a large part of all licenses while the

copyleft licenses are not widely used in npm. It suggests that the proportion of permissive

20

Figure 6: The proportion of the selected licenses in npm.

Table 4: The proportion of the selected licenses in npm.

License Proportion

MIT 60.75%

None 19.14%

ISC 8.06%

Apache-2.0 3.24%

BSD family 4.24%

GPL family 2.18%

Unlicense/PublicDomain 0.50%

MPL family 0.27%

Other 1.62%

All 100%

and copyleft license have an impact on the prevalence of license compliance risk in OSS

ecosystem.

To answer RQ2, we selected some copyleft licenses as the target. The selected copyleft

licenses are listed as follows:

GPL-2.0 (GNU General Public License version 2) and GPL-2.0+

GPL-3.0 (GNU General Public License version 3) and GPL-3.0+

LGPL-2.1 (GNU Lesser General Public License version 2.1) and LGPL-2.1+

LGPL-3.0 (GNU Lesser General Public License version 3.0) and LGPL-3.0+

AGPL-3.0 (GNU Affero General Public License version 3)

Then we collected the packages including a package licensed under the selected copyleft

licenses in its dependency chain. As a result, we collected 4,067 packages. Among them,

2,704 packages are detected as having direct or indirect dependency risk. Note that all

21

Table 5: The statistic of the depth the direct or indirect dependency risk happened.

Depth #Risks #All Probability

Depth1 2,115 20,079 0.1050

Depth2 1,052 57,109 0.0184

Depth3 352 79,065 0.0044

Depth4 82 73,468 0.0011

Depth5 19 60,442 0.0003

Depth6 2 45,410 0.00004

packages detected as having direct or indirect dependency risk in the first detection are

included in these 4,067 packages. The proportion of packages detected as having the risk

is 66.84%. The high proportion suggests that the reuse of packages licensed under the

copyleft license is more likely to cause license compliance risk. One possible explanation is

that the developers simply ignore the license compliance risk when they reuse a package.

To answer RQ3, we analyze the depth the direct or indirect dependency risk happened.

For example, the direct dependency risk is denoted as depth 1. For indirect dependency

risk, the depth is increased. We also count the number of all depths of the direct or

indirect dependencies to calculate the probability of the direct or indirect dependency risk

happened in every depth. Table 5 shows the result.

The probability of the direct or indirect dependency risk happened is decreased with the

dependency depth increasing. The result suggests that the direct or indirect dependency

risk has a tendency to happen in the shallow dependency.

To answer RQ4, we select the 2,704 packages detected as having direct or indirect

dependency risk in the first detection to conduct the self risk detection since we assume

that the packages having direct or indirect dependency risk have a high possibility of

having self risk as well. As a comparison, we also randomly select 2,000 packages with

no direct or indirect dependency risk to conduct the self risk detection. As a result, 964

packages in 2,704 packages are detected as having self risk. The proportion is 35.18%, while

none of the 2,000 safe packages are detected as having the risk. However, in the 9,679,468

source code files of 2,704 packages, only 291,340 files is detected as not compatible with

the packages. The proportion is only 0.03%. The results prove our assumption that the

packages having direct or indirect dependency risk have a high possibility of having self

22

risk as well. Meanwhile, the source code files causing compliance risk only take a small

part of all source code files of a package.

4.3 Answering RQs

Revisiting the research questions:

• RQ1: What is the proportion of packages with license compliance risk in npm?

The proportion of packages with license compliance risk in npm is only 0.644%. The

reason is that the proportion of permissive and copyleft license have an impact on

the prevalence of license compliance risk in OSS ecosystem.

• RQ2: Is reuse of packages licensed under the copyleft license more likely to cause

license compliance risk? Yes, reuse of packages licensed under the copyleft license is

more likely to cause license compliance risk. Developers should pay more attention

to packages licensed under the copyleft license if they want to reuse these packages.

• RQ3: Does transitive dependency have an impact on the occurrence of license com-

pliance risk? Yes, it does. The direct or indirect dependency risk has a tendency to

happen in the shallow transitive dependency.

• RQ4: What are the characteristics of license compliance risk in file level? The

packages having direct or indirect dependency risk have a high possibility of having

self risk as well. Meanwhile, the source code files causing compliance risk only take

a small part of all source code files of a package.

23

5 Copyright Inconsistency Risk

5.1 Background

Software copyright is used to prevents the unauthorized copying of software. It is usually

written in the header part of source code. Here is an example of a license statement taken

from getopt.c file in Linux kernel:

[...]

// SPDX-License-Identifier: GPL-2.0

/*

* arch/alpha/boot/bootp.c

*

* Copyright (C) 1997 Jay Estabrook

*

* This file is used for creating a bootp file for the Linux/AXP kernel

*

* based significantly on the arch/alpha/boot/main.c of Linus Torvalds

*/

[...]

The copyright is Copyright (C) 1997 Jay Estabrook. In this copyright declaration, Jay

Estabrook is the copyright holder. But Jay Estabrook is not the only contributor to this

file. Actually, this file is contributed by 6 contributors. Here comes a problem: who is the

real copyright holder of this file? Could any contributor be a copyright holder even they

just contribute a few lines of code? Could a developer claim him as a copyright holder

even that his copyright information is not included in the header part of source code?

It’s important for developers or companies reusing the OSS software to know the real

copyright holder of OSS software. Recent years some contributors of Linux kernel com-

plained some companies for the violation of copyright. But these companies need to judge

if these contributors have the right to complain them. The unclear definition of copyright

holder is a big potential risk for the developers or companies reusing the OSS software. A

typical example is the inconsistency between the declared copyright holders and the main

contributors. This makes the developers or companies not able to identify the real copy-

right holders. In this study, we conduct an empirical study on Linux kernel to understand

the inconsistency between the declared copyright holders and the main contributors.

24

5.2 Definition

For the purpose of this study, a copyright inconsistency risk refers to the situation when

the declared copyright holders of OSS software are not the main contributors.

5.3 Example

In this section, we show some examples of files with copyright inconsistency risk in Linux

kernel.

The file sama5.c is an example. The declared copyright holder is shown in the following:

[...]

/*

* Setup code for SAMA5

*

* Copyright (C) 2013 Atmel,

* 2013 Ludovic Desroches <ludovic.desroches@atmel.com>

*

* Licensed under GPLv2 or later.

*/

[...]

But the developer who contributed the largest proportion of this file is Alexandre Belloni.

So the declared copyright holder is different with the main contributors.

Another example is coda.h. The declared copyright holder is shown in the following:

[...]

/*

*

* Based on cfs.h from Mach, but revamped for increased simplicity.

* Linux modifications by

* Peter Braam, Aug 1996

*/

[...]

While the main contributor is Linus Torvalds who is not the declared copyright holders.

Another example is where no copyright holder is recorded in the header part. brcmphy.h

is one of this kind of example. The header part of this file is shown as follows:

[...]

/* SPDX-License-Identifier: GPL-2.0 */

[...]

/* All Broadcom Ethernet switches have a pseudo-PHY at address 30 which is used

* to configure the switch internal registers via MDIO accesses.

25

*/

[...]

The main contributor of this file is Florian Fainelli, who is not written in the header

part.

The above three files are examples with copyright inconsistency risk.

26

6 Detection of Copyright Inconsistency Risk

6.1 Method

Our method is divided into 3 steps:

1. Build the header comments dataset We build a comment extractor and use

it to extract the comments from files in Linux kernel. We build the dataset of the

comments by using file name as an index. In this dataset, not only the file name

but also the path of the file is recorded. And for the comment extractor, we extract

the comments based on the rules of the beginning and the end of the comments in

C/C++ programming language. After extraction, we clear the extracted comments

and only store the real comments. For example, a part of the comments of a file

named sqlparser.pegjs in the directory sqlparser.pegjs is shown as follows:

[...]

/* AFS cell and server record management

*

* Copyright (C) 2002 Red Hat, Inc. All Rights Reserved.

* Written by David Howells (dhowells@redhat.com)

*

[...]

As a result, the comments are stored as follows:

[...]

AFS cell and server record management

Copyright (C) 2002 Red Hat, Inc. All Rights Reserved.

Written by David Howells (dhowells@redhat.com)

[...]

2. Build the contributor dataset We use cregit21 to collect the main contributors

of files. cregit can collect information of contributors to the Linux kernel, such

as name, contributed tokens, and the proportion of contributed tokens in all tokens

etc. cregit provide all information in an HTML file. An example is a file named

clcd.h in the directory /4.14/include/linux/amba/. The information of contributors

is listed in a table as shown in Figure 7.

We build a web crawler to extract the data from HTML file created by cregit. The

data is also organized with a table in our dataset.

21https://github.com/cregit/cregit/

27

Figure 7: The information of contributors collected by cregit.

In this step, we treat contributors who contributed the most tokens as main contrib-

utors.

3. Detect if the main contributor is in the header comments With the built

header comments dataset and contributor dataset, we detect if the main contributor

is in the header comments by matching the name of main contributors with all lines

of comments. If the name is not found in any line of the comments, we detect this

file as having copyright inconsistency risk.

A file named badblocks.c in the directory /4.14/block/ shows an example that the

main contributor in the header comments is matched by a comment line. The com-

ments in the header are:

[...]

/*

* Bad block management

*

* - Heavily based on MD badblocks code from Neil Brown

*

* Copyright (c) 2015, Intel Corporation.

*

[...]

While the information extracted by cregit is shown in Figure 8.

It’s easy to know that no comments in the header can be matched by the main

contributor named Vishal Verma.

While a file named a.out-core.h in the directory /arch/alpha/include/asm/ shows

an example that the main contributors do not match any line of the comments. The

comments in the header are:

28

Figure 8: The information of contributors collected by cregit.

Figure 9: The information of contributors collected by cregit.

[...]

/* a.out coredump register dumper

*

* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.

* Written by David Howells (dhowells@redhat.com)

*

* This program is free software; you can redistribute it and/or

* modify it under the terms of the GNU General Public Licence

* as published by the Free Software Foundation; either version

* 2 of the Licence, or (at your option) any later version.

*/

[...]

While the information extracted by cregit is shown in Figure 9.

a.out-core.h file is detected as having no copyright inconsistency risk.

6.2 Threats to Validity

In this study, we proposed a method of detecting the copyright inconsistency risk in

Linux kernel. But there are still some threats to the validity of the result. Firstly, Linux

29

kernel has a long history, the early contributors are untraceable before the source code

files are uploaded to GitHub by Linux kernel. Another threat is some contributors only

recorded the information of their companies or nickname in the copyright. This kind of

cases is detected as having copyright inconsistency risk since it is impossible for us to find

it out.

30

7 Empirical Study on Copyright Inconsistency Risk in Linux kernel

To understand the prevalence of copyright inconsistency risk and how they happened,

we conduct an empirical study on Linux kernel. The version of Linux kernel we selected

is 4.14. We download it from GitHub22.

7.1 Research Question

To achieve our purpose, we set our research question as follows:

• RQ What is the proportion of files with copyright inconsistency risk in Linux kernel?

7.2 Result

We apply our method to all files in Linux kernel version 4.14. As a result, In 45,471 files

of Linux kernel about 14,304 files have the copyright inconsistency risk. The proportion

is 31.46%. The result suggests that the copyright inconsistency risk is very common in

Linux kernel. Then we manually analyze the evolutionary history of some files detected as

having copyright inconsistency risk and find some cases how copyright inconsistency risk

happened:

• Linux kernel has a long history. Before Linux kernel is uploaded to GitHub, many

contributors contributed source codes. The information of these early contributors

can’t be traced.

• Some contributors are the employee of companies, they only recorded the information

of their companies instead of themselves.

• As time pass by, some contributors continually contribute source codes and become

the main contributor, but they are not the original creators and don’t write their

copyright information in the header.

The first case and second case are copyright inconsistency risks caused by the internal

factor, while the third case is caused by the external factor. In other words, different with

the first and the second case, the third one is able to be prevented by the contributors of

the files. To ascertain the prevalence of this preventable copyright inconsistency risks, we

conduct an evolutionary study on 11,873 files in the directory /arch of Linux kernel. As

22https://github.com/torvalds/linux

31

a result, in 7,603 files detected as having copyright inconsistency risk, only 315 files are

the third case. The result suggests the difficulties of knowing the real copyright holders

of files in Linux kernel.

7.3 Answering the RQ

Revisiting the research question:

• RQ What is the proportion of files with copyright inconsistency risk in Linux kernel?

The proportion of files with copyright inconsistency risk in Linux kernel is 31.46%.

The copyright inconsistency risk is very common in Linux kernel.

32

8 Related Work

8.1 Software License

Many studies in software engineering investigated software license. There are some

studies that devote to identify licenses [4, 8, 13]. Based on these studies, some researchers

analyzed software licenses in open source projects and revealed some license issues. Di

Penta et al. [3] provided an automatic method to track changes occurring in the licensing

terms of a system and did an exploratory study on license evolution in six open source

systems and explained the impact of such evolution on the projects. German et al. [6]

proposed a method to understand licensing compatibility issues in software packages. They

mainly focused on the compatibility between license declared in packages and those in

source files. In another research by Di Penta et al. [7], they analyzed license inconsistencies

of code siblings (a code clone that evolves in a different system than the code from which it

originates) between Linux, FreeBSD, and OpenBSD, but they did not explain the reasons

underlying these inconsistencies. Alspaugh et al. [1] proposed an approach for calculating

conflicts between licenses in terms of their conditions. Wu et al. proposed an approach

to find license inconsistencies in similar files [18]. By investigating the revision history

of these files, they summarized the factors that caused these license inconsistencies and

tried to decide whether they are legally safe or not. Vendome et al. [16] performed a large

empirical study of Java applications and found that changing license is a common event

and a lack of traceability between when and why the license of a system changes. Vendome

et al. performed a study on GitHub and found that developers adopt a license may depend

on various factors and they discovered the lack of traceability of when and why licensing

changes are made and highlighted the need for better tool support in guiding developers

in choosing and changing licenses and in keeping track of the rationale of license changes

[15].

8.2 License Compliance

License compliance is an import area of research that draws attention from many re-

searchers. Zhang et al. have developed a tool named LCheck that utilizes Google Code

Search service to check whether a local file exists in an OSS project and whether the

licenses are compatible [19]. German et al. proposed a tool named Kenen that checks

license compliance for Java components that uses component identification, provenance

discovery, license identification and licensing requirements analysis [5]. Van et al. pro-

33

posed an approach that can uncover license compliance inconsistencies by analyzing the

Concrete Build Dependency Graph of a software system [14]. Vendome et al. studied the

rationale of developers in choosing and changing licenses and investigated the problem of

traceability of license changes [17]. They provided a vision of ensuring license compliance

of a system. Kapitsaki et al. proposed an approach of automating the license compliance

with a process that examines the structure of Software Packages Data Exchange [9].

34

9 Conclusion and future work

In this paper, we proposed an approach to detect the license compliance risk of software

projects in OSS ecosystems, which can expose direct and indirect dependencies of which

the licenses are incompatible with the license of detected software projects.

With this method, we conducted an empirical study to understand the current situation

of license compliance risk in npm, a popular user-contributed OSS ecosystem. We discov-

ered that the proportion of packages detected as having direct or indirect dependency risk

is only 0.644%. The reason is that permissive licenses take a large proportion of all licenses

while the copyleft licenses are not widely used in npm. We also revealed that the reuse

of packages licensed under the copyleft license is more likely to cause license compliance

risk. The result of the empirical study also suggests that the direct or indirect dependency

risk has a tendency to happen in the shallow dependency. We also discovered that the

packages having direct or indirect dependency risk have a high possibility of having self

risk as well. Meanwhile, the source code files causing license compliance risk only take a

small proportion of all source code files of a package.

In this study, we also proposed a method to detect the copyright inconsistency risk.

With this method, we conducted an empirical study on Linux kernel to understand the

prevalence of copyright inconsistency risk and how they happened. As a result, the propor-

tion of source code files having the copyright inconsistency risk is 31.46%. With a manual

analysis of some source code files having the copyright inconsistency risk, we discovered

that there are some cases how copyright inconsistency risk happened: the early version of

Linux kernel is untraceable; some contributors recorded their companies instead of their

names; some contributors not included in the declared copyright holders became the main

contributor with the time passing by.

The results of this study proved the prevalence of license compliance risk and copyright

inconsistency risk in user-contributed OSS ecosystem. When developers reuse OSS soft-

ware, they should pay special attention to open source license and software copyright to

prevent themselves from legal risks.

For future work, we will apply our method to other user-contributed OSS ecosystems

such as the CRAN package repository23 and RubyGems 24. It will be interesting to com-

pare the situations of license compliance risk and copyright inconsistency risk in different

23https://cran.r-project.org/
24https://rubygems.org/

35

OSS ecosystems. We will also improve our method of detecting license compliance risk

and copyright inconsistency risk and provide them with web services.

36

謝辞

First and foremost, I would like to express my sincere gratitude to my supervisor Prof.

Katsuro Inoue for giving me the opportunity to study in Japan and work with him.

Without his continuous support and help, it would not have been possible for me to

complete my thesis.

Besides my supervisor, I would like to thank the rest of the members in my research

group: Prof. Daniel M. German, Prof. Yuki Manabe, Prof. Takashi Ishio, Prof. Raula

Gaikovina Kula and Yuhao Wu, for their valuable comments and suggestions in my re-

search.

I would also like to thank the rest of the members of Inoue laboratory, especially Mrs.

Mizuho Karube. With them, I left a lot of good memories during the times in Japan.

Last but not least, I am very grateful to my parents. They support my study and living

in Japan and pull me through many difficulties.

37

参考文献

[1] T.A. Alspaugh, H.U. Asuncion, and W. Scacchi. Intellectual property rights require-

ments for heterogeneously-licensed systems. In Proceedings of the 17th International

Requirements Engineering Conference (RE2009), pp. 24–33, 2009.

[2] Barry W. Boehm. Improving software productivity. Computer, Vol. 20, No. 9, pp.

43–57, September 1987.

[3] Massimiliano Di Penta, Daniel M. German, Yann-Gaël Guéhéneuc, and Giuliano

Antoniol. An exploratory study of the evolution of software licensing. In Proceedings

of the 32nd International Conference on Software Engineering (ICSE2010), pp. 145–

154, 2010.

[4] Daniel M German, Yuki Manabe, and Katsuro Inoue. A sentence-matching method

for automatic license identification of source code files. In Proceedings of the 25th

International Conference on Automated Software Engineering (ASE2010), pp. 437–

446, 2010.

[5] Daniel German and Massimiliano Di Penta. A method for open source license com-

pliance of java applications. IEEE software, Vol. 29, No. 3, pp. 58–63, 2012.

[6] D.M. German, M. Di Penta, and J. Davies. Understanding and auditing the licens-

ing of open source software distributions. In Proceedings of the 18th International

Conference on Program Comprehension (ICPC2010), pp. 84–93, 2010.

[7] D.M. German, M. Di Penta, Y.-G. Gueheneuc, and G. Antoniol. Code siblings:

Technical and legal implications of copying code between applications. In Proceedings

of the 6th Working Conference on Mining Software Repositories (MSR2009), pp. 81–

90, 2009.

[8] Robert Gobeille. The FOSSology project. In Proceedings of the 5th Working Confer-

ence on Mining Software Repositories (MSR2008), pp. 47–50, 2008.

[9] Georgia M Kapitsaki, Frederik Kramer, and Nikolaos D Tselikas. Automating the

license compatibility process in open source software with spdx. Journal of Systems

and Software, Vol. 131, pp. 386–401, 2017.

38

[10] Mircea Lungu, Michele Lanza, Tudor Grba, and Romain Robbes. The small project

observatory: Visualizing software ecosystems. Science of Computer Programming,

Vol. 75, No. 4, pp. 264 – 275, 2010. Experimental Software and Toolkits (EST

3): A special issue of the Workshop on Academic Software Development Tools and

Techniques (WASDeTT 2008).

[11] M Douglas McIlroy, JM Buxton, Peter Naur, and Brian Randell. Mass-produced

software components. In Proceedings of the 1st International Conference on Software

Engineering (ICSE1968), pp. 88–98, 1968.

[12] Thomas A. Standish. An essay on software reuse. IEEE Transactions on Software

Engineering, Vol. SE-10, No. 5, pp. 494–497, Sept 1984.

[13] Timo Tuunanen, Jussi Koskinen, and Tommi Kärkkäinen. Automated software li-

cense analysis. Automated Software Engineering, Vol. 16, No. 3-4, pp. 455–490, 2009.

[14] Sander Van Der Burg, Eelco Dolstra, Shane McIntosh, Julius Davies, Daniel M Ger-

man, and Armijn Hemel. Tracing software build processes to uncover license compli-

ance inconsistencies. In Proceedings of the 29th ACM/IEEE international conference

on Automated software engineering, pp. 731–742. ACM, 2014.

[15] Christopher Vendome, Gabriele Bavota, Massimiliano Di Penta, Mario Linares-

Vásquez, Daniel German, and Denys Poshyvanyk. License usage and changes: a

large-scale study on github. Empirical Software Engineering, Vol. 22, No. 3, pp.

1537–1577, 2017.

[16] Christopher Vendome, Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di

Penta, Daniel M. Germán, and Denys Poshyvanyk. License usage and changes: A

large-scale study of java projects on github. In The 23rd IEEE International Confer-

ence on Program Comprehension, ICPC 2015, 2015.

[17] Christopher Vendome and Denys Poshyvanyk. Assisting developers with license com-

pliance. In Proceedings of the 38th International Conference on Software Engineering

Companion, pp. 811–814. ACM, 2016.

[18] Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M German, and Katsuro In-

oue. A method to detect license inconsistencies in large-scale open source projects.

In Proceedings of the 12th Working Conference on Mining Software Repositories

(MSR2015), pp. 324–333, 2015.

39

[19] Hongyu Zhang, Bei Shi, and Lu Zhang. Automatic checking of license compliance.

In Software Maintenance (ICSM), 2010 IEEE International Conference on, pp. 1–3.

IEEE, 2010.

40

