
修士学位論文

題目

Design and Implementation of

Test Case Generation Tool for BPEL Unit Testing

(BPEL単体テストのためのテストケース生成手法の提案と実現)

指導教員

井上 克郎 教授

報告者

Choy Kho Yee

平成 20年 2月 8日

大阪大学 大学院情報科学研究科

コンピュータサイエンス専攻 ソフトウェア工学講座

平成 19年度 修士学位論文

Design and Implementation of Test Case Generation Tool for BPEL Unit Testing
BPEL単体テストのためのテストケース生成手法の提案と実現

Choy Kho Yee

Abstract

In order to create test cases for the unit testing of business process written in Web
Services Business Process Execution Language (WS-BPEL or BPEL), developers have to
prepare input data for the BPEL process under test (PUT) and corresponding verification
conditions for output data from the PUT. This preparation of test-related data can be
a tedious task due to the complexity of XML data used by the PUT. Furthermore, it is
difficult for the developers to decide whether the created test cases are sufficient for testing
the PUT.

In this thesis, the design and implementation of a test case generation tool employing
a data dependency based approach is presented. In this approach, developers first define
data dependencies using XPath expression. Type definitions in WSDL documents are then
leveraged to automatically generate independent data which, together with the specified
data dependencies, are then used to generate coherent input data and corresponding veri-
fication conditions. Finally, test cases are composed using these data. Besides, a platform
independent method to collect execution information of the PUT is also presented. This
can provide developers useful information for evaluating the adequacy of generated test
cases. Experiments were carried out to verify that this tool indeed helps in the creation
of test cases for BPEL unit testing.

Keywords

Unit testing
Test case generation
WS-BPEL
Data dependency

1

Contents

1 Introduction 6

2 Background Technologies 8
2.1 SOA and Web Service . 8
2.2 BPEL . 9
2.3 BPEL Unit Testing . 12

3 Approach to Support Test Case Generation 16
3.1 Data Dependency Based Test Case Generation 16

3.1.1 Data Dependency Specification . 18
3.1.2 Test-related Data and Test Case Generation 18

3.2 Platform Independent Execution Logging 20
3.2.1 Augmentations of the PUT . 20
3.2.2 The Logger Web Service . 21

4 Design and Implementation 22
4.1 System Overview . 22
4.2 BPEL Data Dependency Description Specification 24

4.2.1 BPELUnit Test Suite . 24
4.2.2 Operation Set . 25
4.2.3 Data Dependency . 25

4.3 Test-related Data and Test Case Generation 28
4.3.1 XML Data Generation . 29
4.3.2 Test Case Generation . 33

4.4 Platform Independent Execution Logging 33
4.4.1 BPEL Process Augmenter . 34
4.4.2 Logger Web Service . 35

4.5 Graphical User Interface . 36
4.5.1 BPEL Data Dependency Editor . 36
4.5.2 BPELUnit Runner Editor . 37

5 Evaluation 40
5.1 Case Study: Testing the BPEL Travel Process 40
5.2 Experiment . 41

5.2.1 Experiment Setup . 41
5.2.2 Results and Discussion . 44
5.2.3 Validity of the Results . 49

2

6 Related Work 52

7 Conclusion 53

References 55

Appendix 58

A XML Schema of BPEL Data Dependency Description 59

3

List of Figures

1 Flow of BPEL Travel Process . 10
2 Types of Activity in BPEL . 11
3 BPEL Unit Testing of BPEL Travel Process 13
4 Example of Data Dependency . 17
5 Data Dependencies in BPEL Travel Process 17
6 Using Corresponding Generator to Generate Random Data within Constraints 19
7 Augmentation of the PUT . 21
8 System Overview . 23
9 The BPEL Data Dependency Description Document 24
10 Operations and Messages . 25
11 Data Dependency Specification . 26
12 Data Dependency in a Multiple Invocation Scenario 28
13 Flow of XML Data Generation . 30
14 XML Data Generator Class . 31
15 Message Data Table . 32
16 Sample of Augmentation . 34
17 BPEL Data Dependency Editor . 37
18 Dependency Specification Section in BPEL Data Dependency Editor 38
19 Selecting Related Operations in Operation Set 38
20 BPELUnit Runner Editor . 39
21 The Loan Approval Process . 43
22 The Meta Search Process . 44

4

List of Tables

1 Fields in Data Dependency XML Structure 27
2 Example of Data Dependency Map . 30
3 Skill Level . 42
4 Experiment Results . 45
5 Number of Dependencies Created During Experiment Grouped by XPath

Expression (XP) or Fixed Value (FV) . 46
6 Number of Dependencies Created During Experiment Grouped by Substi-

tution (S), Multiplicity (M) and Verification (V) 47
7 Number of Verification Conditions Created During Experiment Based on

Tool Being Used . 48

5

1 Introduction

Web Services Business Process Execution Language (WS-BPEL or BPEL) [18] is an
XML-based language designed to compose Web services [6] in order to implement business
processes. With support from many big companies such as IBM, Microsoft and BEA which
have involved in its standardization work, BPEL is expected to be the de-facto standard
in Web service composition and thus the core technology in realizing Service-Oriented
Architecture (SOA).

As more and more Web service compositions are created with BPEL, it is important
to ensure that the compositions function as expected. Unit testing has been known as an
efficient way in program testing [15]. Therefore, it is believed to be effective in testing
BPEL processes. Unit testing frameworks for BPEL has been proposed by Li et al. [26]
and Mayer et al. [20]. While Li et al. provided some initial ideas on BPEL unit testing
framework design and implementation, Mayer et al. went one step further by implementing
a concrete framework, BPELUnit [5] and licensed it as an open source software.

Nevertheless, BPELUnit does not provide much support in test case creation and the
monitoring of the process under test (PUT). As stated in [11], there are four phases in
software testing: (1) modeling the software’s environment, (2) selecting test scenarios,
(3) running and evaluating test scenarios, and (4) measuring testing progress. While
BPELUnit contributes to the first and the third phases, the other two are still left for
further studies. In this thesis, the design and implementation of a test case generation
tool employing a data dependency based approach is presented. This tool contributes to
the second phase. At the same time, a method to collect execution information of the
PUT using only standard BPEL functions is also proposed and implemented to facilitate
the last phase.

To create a test case in BPELUnit, developers first need to specify a set of relevant
operations which are expected to be invoked by the PUT in the test. Then, for this set of
operations, they have to prepare input data for the PUT and corresponding verification
conditions for output data from the PUT. While the first step is not very difficult, the
preparation of these test-related data while maintaining data coherency can be a tedious
task due to the complexity of XML data used in the communications between the PUT
and multiple Web services it interacts with.

A data dependency based approach is proposed in this thesis to address this problem.
In order to achieve data coherency, developers are required to describe the data depen-
dencies in XML Path Language (XPath) [12]. In the actual generation of input data for
the PUT, the data type definitions specified in the Web Services Description Language
(WSDL) [9] documents of the PUT and its partner Web services are utilised. Based on
the type definitions, independent data that do not depend on other data are automatically
generated. Combining the data dependencies specified by developers in the first step and

6

the automatically generated independent data, sets of coherent input data and correspond-
ing verification conditions can be generated. Test cases are then composed automatically
using these data.

On the other hand, test coverage such as statement coverage, branch coverage and path
coverage are often used as a base measure of testing progress [11]. In order to obtain test
coverage information, the execution information of the PUT must be available. There-
fore, a method to capture execution information of the PUT using only standard BPEL
functions is also proposed and implemented. In this method, standard BPEL activities
which invoke an external logging service are weaved into the PUT. Logged information
helps developers in determining the adequacy of generated test cases.

In this thesis, the design and implementation of a tool based on the above approaches
are presented. The result of a two-stage evaluation process is presented as well. In the
first stage, we carried out a case study to show that the implemented tool can actually be
used in generating test cases for BPEL processes. Then, an experiment was conducted to
compare this tool with the BPELUnit TestSuite Editor [5, 21], which is currently the only
tool available to create BPELUnit test cases.

The rest of this thesis is organized as follows: Section 2 further explains the related
technologies of this research. Section 4 covers the design and implementation of the test
case generation tool based on the proposed approach. Section 5 presents the evaluation
process and the results. Section 6 states the stance of this research with regard to other
related work. Finally, Section 7 concludes the thesis with conclusion and future work.

7

2 Background Technologies

This section explains on the technologies involved in this research. First, we start by
introducing the fundamental ideas such as service oriented architecture and Web service.
Then, BPEL is introduced through an example BPEL process which we created from
scratch using ActiveBPEL Designer [1]. This process will be used throughout this thesis
as example and later in a case study conducted to show the usefulness of our proposed
methods. Finally, the BPELUnit framework which is the sole unit testing framework for
BPEL processes is introduced.

2.1 SOA and Web Service

The Service-Oriented Architecture (SOA) is an architectural paradigm which has
gained great popularity in recent years. It is the latest approach to building, integrat-
ing and maintaining complex enterprise software systems [21]. According to [2, 17, 22],
the basic building blocks in SOA are services, which are loosely coupled and mostly dis-
tributed. The interface of a service is described in an abstract interface language and can
be invoked without knowledge of the underlying implementation. Services can be dynam-
ically discovered and used. Furthermore, SOA supports integration, or composition, of
services.

Web service is widely used in implementing SOA. According to the definition of World
Wide Web Consortium, a Web service is a software system designed to support interop-
erable machine-to-machine interaction over a network. It has an interface described in
a machine-processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages, typically conveyed
using HTTP with an XML serialization in conjunction with other Web-related standards.
[6]

A WSDL document is an XML document which defines the interface of a Web service.
It describes the operations provided by the Web service and the structure and types of
XML data those operations receive and return. Type information of these data is often
defined using XML Schema [19].

XML Schema is used to define data structures and datatypes of elements in XML
documents. There are simple datatypes and complex datatypes in XML Schema. Simple
datatypes represent scalar data while complex datatypes are built up by simple datatypes
to represent more complex structured data. XML Schema provides 19 built-in primitive
datatypes and 25 built-in derived datatypes. Developers may use these pre-defined simple
datatypes and derive new datatypes by applying constraints called facets. For example,
ISBN datatype can be derived from the string datatype by limiting the length of the string
to exactly 10 characters in the following way:

8

<simpleType name="isbn">

<restriction base="string">

<length value="10" />

</restriction>

</simpleType>

The above definition of ISBN datatype constrains data with this type to have an exact
length of 10 characters. However, applicable facets depend on the base datatypes used in
the derivation. A sample XML Schema document can be found in the appendix. This
document is part of the implementation of our proposed tool.

2.2 BPEL

The Web Services Business Process Execution Language (WS-BPEL or BPEL) is an
XML-based language for Web service composition. Its major strength is the simplicity
to orchestrate Web services to deliver a combined service. BPEL uses existing XML
specifications such as WSDL, XPath and XML Schema. It uses definitions in WSDL
documents for composition, offers the composition as WSDL Web service, and allows
handling of XML Schema based data with XPath expressions. We use the following terms
in this thesis:

• A BPEL process is a process written in BPEL.

• A partner Web service or simply partner of the process is Web service that the
process interacts with.

• A client is an application that invokes the BPEL process to use the service it pro-
vides.

Although the specification of BPEL does not consider graphical notation of a BPEL
process, graphical editors such as ActiveBPEL Designer and NetBeans [16] are available.
Figure 1 shows an example BPEL process, the BPEL Travel process, created using Ac-
tiveBPEL Designer. This process implements a tour package search service which returns
additional information about the destination of choice together with the package results.
In particular, it queries services provided by a travel agency and those provided by Ama-
zon [3], a geographical information query service, an image search service and a currency
exchange rate query service. However, all services are imaginary except that provided by
Amazon.

First, the BPEL Travel process accepts search query from a client, the input message
includes information like date and destination. The process then relay the query to other
Web services parallelly in AmazonScope, TravelScope and GeoInfoScope. Books related

9

Figure 1: Flow of BPEL Travel Process

to the destination are returned by the Amazon Web service in the AmazonScope. In
TravelScope, both services provided by the travel agent and the image search service are
invoked. From the travel service, it gets tour package information and from the image
search service, it gets images related to the destination search string. Then, geographical
information like temperature and currency used are returned by the geographical infor-
mation query service in GeoInfoScope.

These results are then assigned to the output message of the BPEL Travel process in the
AssignTourResults, AssignBookResults and AssignInfoResults loops. In AssignInfoResults
loop, the currency exchange rate query service is invoked as many times as the number of
results returned by the geographical information query service, to convert one Japanese
yen to the currency used in the locations returned by the geographical information query
service.

A BPEL process is built up by basic activities and structured activities. In the above
example, we have used four basic activities: receiving query from client (receive), invok-

10

(a) (b)

Basic Activities

Structured Activity

Scope

Figure 2: Types of Activity in BPEL

ing partner Web services (invoke), assigning appropriate values to messages (assign) and
returning results to the client (reply). These basic activities serve as functions with single
purposes. On the other hand, structured activities such as sequence, if, while, forEach,
etc. are used to express more complex controls on how basic activities are executed. From
the above example, parallel flow of activities (flow) and loop (forEach) are examples of
structured activities.

Figure 2 shows more detailed examples of these activities in the BPEL Travel process.
Figure 2 (a) shows the inside of AmazonScope. A scope is a container with which we
can use to hold related activities inside it. As we can see, there are two basic activities,
AssignAmazonSearchQuery and InvokeAmazon, in the scope. Activities in BPEL can
have their own names. AssignAmazonSearchQuery is an assign activity, which assigns
appropriate values to the request message of the service provided by Amazon. On the other
hand, InvokeAmazon is called to actually send the request to Amazon. Then, Figure 2
(b) shows the inside of AssignInfoResults, which is a forEach structured activity. Inside
it, there is one scope which holds three basic activities.

BPEL manipulates data with the assign activity, using values returned from query
and expression language. Query language is used to retrieve a node or its data from XML
data while expression language is used to return a value as a result of an expression.
The default query and expression language adopted in BPEL is the XML Path Language
(XPath).

11

XPath is used to find nodes in an XML document and retrieve useful information from
the nodes. In XPath, location paths are used to locate nodes inside a XML tree structure.
They are a subset of a more general concept called XPath expressions. Instead of just
finding nodes, more operations can be done with XPath expressions, such as number
calculations, string manipulation, etc. For example, with regard to the following XML
fragment, which is the input message for the BPEL Travel process:

<query>

<date>2007-11-13</date>

<destination>Tokyo</destination>

<periodOfDays>10</periodOfDays>

<cost>200000</cost>

<numOfTravellers>1</numOfTravellers>

<numResults>20</numResults>

</query>

the location path /query/destination/text() returns the text node in <destination>,
whose value is “Tokyo”, while the XPath expression count(/query/node()) counts the
number of elements inside <query>, which evaluates to 6.

The following chunk of XML code is the syntax of BPEL for substituting an XML node
with the return value of an XPath expression. This copies the value from the destination
node of a variable called requestMessage to the node specified by Request/Title in the
variable named AmazonItemSearchRequestMsg.

<assign name="AssignAmazonSearchQuery">

<copy>

<from part="body" variable="requestMessage">

<query>destination</query>

</from>

<to part="body" variable="AmazonItemSearchRequestMsg">

<query>Request/Title</query>

</to>

</copy>

</assign>

2.3 BPEL Unit Testing

In the BPEL unit testing framework proposed by Mayer et al. [20], the PUT is isolated
from the real world. The PUT is actually deployed on server while the client and other
partner Web services are simulated by the framework as client track and partner tracks

12

Partner Track:
CurrencyConvertor

Partner Track:
GeoInfo

Partner Track:
Image Search

Partner Track:
TravelSearch

Partner Track:
Amazon

PUTClient Track

verify

verify

verify

verify

verify

verify

verify

Send/Receive
Synchronous

Receive/Send
Synchronous

Receive/Send
Synchronous

Receive/Send
Synchronous

Receive/Send
Synchronous

Receive/Send
Synchronous

Receive/Send
Synchronous

Figure 3: BPEL Unit Testing of BPEL Travel Process

respectively. All tracks are run as independent processes simultaneously when the test
starts.

In these tracks, activities can be added. Each activity corresponds to an invocation
of an operation in that track. However, in the client track, an activity corresponds to
the operation provided by the PUT. There are six types of activities, i.e. “Send Asyn-
chronous”, “Receive Asynchronous”, “Send/Receive Synchronous”, “Receive/Send Syn-
chronous”, “Send/Receive Asynchronous” and “Receive/Send Asynchronous”. These ac-
tivities are different from the order and direction of the message flow, and whether there
is synchronization involved. “Send Asynchronous” and “Receive Asynchronous” activities
correspond to one-way interactions while the two synchronous activities are used in two-
way synchronous interactions. The asynchronous pairs of receive and send are actually a
pair of one-way operations. Figure 3 shows the examples of synchronous activities.

The proposed framework was implemented as BPELUnit, which is licensed as an open
source software. Figure 3 shows a test process in BPELUnit. In this example, the PUT is
the BPEL Travel process introduced in the previous section.

The creation of test case in BPELUnit involves two steps. Developers first select a set
of involved operations in the test case and add them to corresponding tracks as activities.
A track can have more than one activity as shown in the CurrencyConverter partner track
in Figure 3. This means the operation will be invoked more than once. For each of these
activities, developers then prepare the XML data that are to be sent to the PUT and
verification conditions used to verify the data received from the PUT during the test.

13

Here, a verification condition is a pair made up of an XPath expression to be executed
inside the received data and a value which the result of the XPath expression must match.
Below we further elaborate on the preparation of test case using the BPEL Travel process
as example.

We would like to test the correctness of the PUT when the TravelSearch partner returns
zero result. First, we define the involved operations in the test case. Since there are no
conditional branching in this sample process, all operations are selected and added as
activities to each track. Then, XML data to be sent to the PUT during the test have to
be defined for each activity. Below is the example “Send/Receive Synchronous” activity
added into the client track. In the example, we order the client to send the XML data
inside the <data> element to the PUT.

<clientTrack>

<sendReceive service="put:BpelTravelService"

port="BpelTravelServicePort" operation="request">

<send>

<data>

<query>

<date>2007-11-13</date>

<destination>Tokyo</destination>

<periodOfDays>10</periodOfDays>

<cost>200000</cost>

<numOfTravellers>1</numOfTravellers>

<numResults>20</numResults>

</query>

</data>

</send>

<receive />

</sendReceive>

</clientTrack>

Finally, we define verification conditions used to verify the data received from the PUT
during the test. For example, the PUT is supposed to send the following XML data to
the TravelSearch service, corresponding to the request from the client above.

<query>

<appid>TravelKey-ID1234</appid>

<startDate>2007-11-13</startDate>

<searchKey>Tokyo</searchKey>

</query>

14

In order to verify that the <startDate> and <searchKey> are properly set in the
PUT and sent to the TravelSearch service, corresponding conditions can be defined in the
activity in TravelSearch partner track.

<partnerTrack name="TravelSearch">

<receiveSend service="trv:DummyTravelSearchService"

port="DummyTravelSearchServicePort" operation="request">

<send>

<data />

</send>

<receive>

<condition>

<expression>startDate</expression>

<value>’2007-11-13’</value>

</condition>

<condition>

<expression>searchKey</expression>

<value>’Tokyo’</value>

</condition>

</receive>

</receiveSend>

</partnerTrack>

After preparing the test case, it can be run inside the BPELUnit framework. At the
beginning of the test, the simulated client initiates the test by sending the prepared data
to the PUT. The PUT then invokes the operations of its simulated partners as necessary
along the test. These partners receive data from the PUT and verify them according to
the given verification conditions. If everything is fine, the invoked partners return the
prepared data to the PUT for further processing. If an error occurs along the way, the
test is terminated immediately and the error is reported to the tester.

15

3 Approach to Support Test Case Generation

The main purpose of this research is to design and implement a tool to support BPEL
developers in creating test cases for BPELUnit. We achieve this goal by proposing (1) a
data dependency based method to ease the creation of coherent input data for the PUT
and verification conditions in BPELUnit, and (2) a platform independent way of capturing
execution information of the PUT which can help developers decide whether the created
test cases are sufficient for testing the PUT. The following sections present the proposed
approach in detail.

3.1 Data Dependency Based Test Case Generation

Data dependencies exist amongst the input and output data of the PUT. Figure 4
shows an example of data dependency that exists in BPEL Travel process which was
used as example in Section 2.2. In the example, data are simply copied from message
to message. As in the case of this example, we believe that these data dependencies
are simple because BPEL only provides minimum functions needed to perform simple
data manipulation necessary in defining business processes [10]. We aim to deploy this
simplicity of data dependencies in test case generation.

We propose a test case generation method based on data dependencies. In this pro-
posed method, developers first need to understand the specification of the PUT. This can
be safely assumed as BPELUnit is designed for white box testing of the PUT. Then, devel-
opers select sets of relevant operations in the test case. For each operation set, developers
list out data dependencies of its input and output data. A simple presentation of the
data dependencies that exist in BPEL Travel process is shown in Figure 5. Note that the
number of times an operation is invoked might depend on data, too. This dependency is
shown as an arrow that leads from CurrencyExchage to data number ten in Figure 5. In
order to process these data dependencies, they must be specified in a machine-processable
format. We found XPath convenient in the specification of data dependency since it is the
default query and expression language in BPEL.

Test-related data are then generated based on the data dependencies specified earlier.
For the example shown in Figure 4, independent data in the client request message are
first generated randomly. Verification conditions can then be added automatically to the
corresponding activity in the TravelSearch track, to verify that the dependent data indeed
have the same values as the data they depend on. These test-related data are later used
to generate test case. Dependencies which indicate the number of times an operation is
invoked are used in generating the appropriate number of activities in a track.

16

<query>
 <date>2007−11−13</date>
 <destination>Tokyo</destination>
 <periodOfDays>10</periodOfDays>
 <cost>200000</cost>
 <numOfTravellers>1</numOfTravellers>
 <numResults>20</numResults>
</query>

<query>
 <appid>TravelKey−ID1234</appid>
 <startDate>2007−11−13</startDate>
 <searchKey>Tokyo</searchKey>
</query>

Client BPEL Travel Process TravelSearch

depends on

Client Request Message
TravelSearch Request Message

<response>
 <searchResult>
 <agentName>AAA</agentName>
 <packageName>10 days Deluxe!</packageName>
 <destination>Tokyo</destination>
 <startDate>2007−11−13</startDate>
 <endDate>2007−11−23</endDate>
 <price>175000</price>
 <details>http://www.aaa.jp/10−days−deluxe/</details>
 </searchResult>
</response>

TravelSearch Response Message

depends on

Figure 4: Example of Data Dependency

BPEL Travel Service

Amazon

TravelSearch

ImageSearch

GeoInfo

CurrencyExchange

Depends on all output
from all partners

`40

2

3

4

5

6

7

8

9

10

11

12

1

Data Dependency

n Input/Output Data

Figure 5: Data Dependencies in BPEL Travel Process

17

3.1.1 Data Dependency Specification

We chose to use XPath as the language to specify data dependencies in our work. Lo-
cation path is used to specify the dependent node in an XML data while XPath expression
is used to return the value this dependent node should have. An example is shown below.
This example shows the pair of XPath expressions to specify the dependency between the
TravelSearch request message and the client request message in Figure 4.

Dependent node: (TravelSearch Request Message) query/startDate

Value: (Client Request Message) query/date

Note that (TravelSearch Request Message) and (Client Request Message) are
inserted to clarify which message the XPath expressions operates on and not part of the
XPath expressions.

Besides data-to-data dependency, there is also dependency of the number of invocations
of an operation on data, such as in the case in which an operation have to be invoked as
many times as there are search results. In this case, the dependency consists of an identifier
of the operation and the XPath expression which specify the number of times it is invoked.

3.1.2 Test-related Data and Test Case Generation

Data are divided into four categories according to their direction (in or out) with regard
to the PUT and their dependencies on other data. The characteristics of each category
together with the way they are handled are presented below.

Independent Input Data

Independent input data are input data to the PUT which do not rely on other data,
thus can be generated freely. To generate a set of coherent input data, independent input
data should first be generated. An example of independent input data is the client request
message shown in Figure 4.

A simple yet effective approach is used in this research to generate independent input
data. Generators corresponding to each built-in primitive datatype in XML Schema are
first prepared. These generators take as input parameters corresponding to the appli-
cable XML Schema facets and generate random instance value within the specified con-
straints. For example, the float generator which generates data of float datatype accept
arguments corresponding to facets applicable on float datatype, such as enumeration,
maxExclusive, maxInclusive, minExclusive, minInclusive, pattern, etc. An example
is shown in Figure 6. A set of similar generators for other predefined simple datatypes,
which are derived from primitive datatypes can then be easily constructed based on the

18

Float Generator

Facets

minInclusive

maxInclusive

<simpleType name="probability">

 <restriction base="float">

 <minInclusive value="0"/>

 <maxInclusive value="1"/>

 </restriction>

</simpleType>

XML Schema Definition:

Generates a random

value in the range

of 0.0 - 1.0.

Figure 6: Using Corresponding Generator to Generate Random Data within Constraints

above prepared generators. These generators can be refined to restrict the kind of data
generated as far as the XML Schema allows.

Although these generators are only defined for simple datatype, they can be used
to generate complex datatype with the help from a controller, which traverse the tree
structure of the complex XML data and fill in values of simple datatype along the way.

Dependent Input Data

Dependent input data are input data to the PUT which rely on other data. An
example of dependent input data is the TravelSearch response message shown in Figure
4. Dependent input data can be generated according to their relationship with other data
specified in XPath expression.

Independent Output Data

These data come out from the PUT and do not rely on previous data. The correspond-
ing verification conditions have to be independently specified. This data group includes
dynamically generated or statically defined data in the PUT. For example, partner Web
services often require the use of special access keys to identify callers, the value of these
keys are often defined statically inside the PUT and do not depend on other data. An ex-
ample of independent output data is the <appid> element in TravelSearch request message
shown in Figure 4.

Dependent Output Data

Dependent output data are output data from the PUT which relies on other data. An
example of dependent output data is the TravelSearch request message shown in Figure 4.
To verify dependent output data, the verification condition which is made up of a location
path pointing to the data and an expected value have to be generated. The location path
to the element which is to be verified can be constructed easily since the structure of
the overall output data is known. The expected value can be generated according to the
relationship with other data specified in XPath expression.

19

Generating Test Cases

As explained in Section 2.3, a BPELUnit test case basically consists of a set of client
track and partner tracks, which contains activities corresponding to involved operations
respectively. These activities hold the data to be sent to the PUT and verification con-
ditions used to verify output from the PUT. Amongst these necessary information in a
BPELUnit test case, data and verification conditions have been generated in the previous
stage. The set of involved operations is also defined by developers beforehand. Therefore,
it is comparatively easy to compose a complete test case with these data. Refer Section
4.3.2 for a detailed explanation of the process.

3.2 Platform Independent Execution Logging

This section presents a method to capture execution information by weaving standard
BPEL activities which invoke an external logging service into the PUT. From the log,
execution information can be retrieved and analyzed to present useful information to
developers.

The proposed approach is inspired by the work of L. Baresi et al. [14]. In their work, a
non intrusive way of adding assertions as comments into BPEL processes was proposed for
process monitoring purposes. These comments are then converted accordingly to BPEL
activities at run time, without changing the functional behavior of the original process.
Although their intention was not on execution logging, similar approach can be applied
in this case. Since the purpose is simply to gather execution information, no human
interaction is needed here. Standard BPEL activities used to gather such information can
be added into the process automatically before compilation takes place. The proposed
method is explained in the following subsections.

3.2.1 Augmentations of the PUT

The PUT is first augmented with additional invoke activities, with one attached before
and another one after each basic activity in the PUT. This augmentation process is shown
in Figure 7. These invoke activities all have the same single purpose: invoke an external
logger Web service to notify that the activity to which it is attached is going to be, or has
been executed. From the log output of the logger Web service and the source code of the
PUT, execution information can be retrieved and analyzed to present useful information
to developers.

The attachment of the pair of invoke activities to a basic activity is done by group-
ing the basic activity and the surrounding invoke activities inside a sequence structured
activity. In Figure 7, this grouping is shown as boxes surrounding the tuples of basic activ-
ity and invoke activities. With the use of sequence, it is guaranteed that corresponding

20

Original PUT

Augmented PUT

Basic activity

Invoke activity for

logging purpose

A sequence structure

Figure 7: Augmentation of the PUT

invoke activities is executed right before and after the activity they are attached to.

3.2.2 The Logger Web Service

The logger Web service should at least provides the following operations:

• An operation which accepts log requests. Once invoked by the call from the PUT,
this operation records the time of arrival of the message and the information con-
tained in the request.

• An operation to control log profile so that log requests from different test cases can
be identified and handled accordingly.

• An operation to retrieve logged information.

21

4 Design and Implementation

This section presents the design and implementation of a test case generation tool for
BPEL unit testing based on the data dependency based approach proposed in Section 3.
First, the overview of the whole system is presented. Then, the types of data dependency
this tool supports and the way data dependencies are stored are discussed. This is followed
by detailed explanations on both the back end and the user interface of the tool.

4.1 System Overview

Figure 8 shows the system overview of the test case generation tool. A dotted-line
box represents a subsystem. There are two subsystems in the tool, one is the test case
generation subsystem and the other one is the platform independent execution logging
subsystem. As their names suggest, the test case generation subsystem aids developers
in the creation of test cases while the execution logging subsystem gives feedbacks to
developers after the generated test cases have been run.

The test case generation subsystem comprises three components. The BPEL Data De-
pendency Editor enables developers to group relevant operations into operation sets and
then specify data dependencies for each set. This editor gets type information of XML
data used by these operations from the WSDL files of involved Web services. It provides a
graphical interface to help developers create the BPEL Data Dependency Description doc-
ument. The Test Case Generator takes as input the BPEL Data Dependency Description
document and the WSDL files and output test cases which can be run on the BPELUnit
framework. The specification of the BPEL Data Dependency Description document is
presented in Section 4.2 and the mechanism of the Test Case Generator is discussed in
Section 4.3. Section 4.5 introduces the graphical interface of the BPEL Data Dependency
Editor.

The platform independent execution logging subsystem is composed of three compo-
nents. The BPEL Process Augmenter takes in a BPEL process and augment it with
additional invoke activities as explained in Section 3.2.1. Developers then deploys the
augmented BPEL process on the BPEL engine as usual. Test cases generated previously
are then run on the BPELUnit framework and these invoke activities gets called and
they send log requests to the Logger Web Service. The details of these components are
discussed in Section 4.4. The BPELUnit Runnder Editor is a graphical front end provided
to access all these components. It lets developers transform a BPEL process using the
BPEL Process Augmenter and run BPELUnit test cases. After running the test cases,
it invokes the Logger Web Service to retrieve the execution information. Comparison is
made between the original BPEL process and the retrieved information to produce the
final report which is presented to the developers as feedbacks. This editor is introduced

22

WSDL
Input

BPEL Data
Dependency Editor

creates

Test Case
Generator

Input

BPEL Data
Dependency Description

Test Case Generation

Test
Cases

generates

BPEL Engine

BPEL Process
Augmenter

Logger
Web Service

BPELUnit

BPELUnit Runner
Editor

Developer

Platform Independent Execution Logging

Input

retrieves execution informationfeedback

generates deployed tests

invokes

runs

calls

calls

Figure 8: System Overview

23

<bpelDataDependencies>

</bpelDataDependencies>

<name> ... </name>
<baseURL> ... </baseURL>
<deployment>
 <put name="..."> ... </put>
 <partner name="..." wsdl="..." />
 <partner name="..." wsdl="..." />
 ...
</deployment>

<operationSets>
 <OperationSet name="...">
 <operations> ... </operations>
 <messages> ... </messages>
 <dependencies>
 <dependency> ... </dependency>
 ...
 </dependencies>
 </OperationSet>
 ...
</operationSets>

deployment section

operation set and data dependency section

Figure 9: The BPEL Data Dependency Description Document

in Section 4.5.

4.2 BPEL Data Dependency Description Specification

The BPEL Data Dependency Description document is implemented as an XML docu-
ment. In this document, the following information needs to be stored in order to provide
enough information for the Test Case Generator to generate test cases later.

• Information needed in the BPELUnit test suite document.

• Sets of relevant operations, each composes a test case.

• Data dependency information in each of the operation sets.

The basic structure of a BPEL Data Dependency Description document is shown in
Figure 9. In the following sections, how each of the above is stored in the document is
discussed. The full XML Schema of the BPEL Data Dependency Description document
is provided in the appendix.

4.2.1 BPELUnit Test Suite

BPELUnit test suite binds several test cases together. It contains two sections, i.e. the
deployment section and the test case section. The deployment section contains information
it needs to set up a testing environment, such as the location of WSDL files of the PUT

24

<operations>
 <operation id="1" partner="..." service="..." port="..." operation="..."/>
</operations>

<messages>
 <message id="1" operationId="1" messageType="input"/>
 <message id="2" operationId="1" messageType="output"/>
</messages>

Figure 10: Operations and Messages

and the partners. Although the Test Case Generator’s main job is to generate test cases,
it combines these test cases into a BPELUnit test suite for easier management. Therefore,
the generator needs information required to produce a BPELUnit test suite. This piece of
information is stored in the deployment section in the BPEL Data Dependency Descrip-
tion document as shown in Figure 9. Although the BPELUnit can take many different
parameters to set up the testing environment, here some of these parameters take the
default values to simplify the tool’s interface. More flexibilities can be introduced in the
future versions of the tool.

4.2.2 Operation Set

In BPELUnit, each test case corresponds to a set of operations. Therefore, the BPEL
Data Dependency Description document must contain information on the set of operations
involved in each test case.

Operation set information is stored in the second section of the BPEL Data Depen-
dency Description document, shown in Figure 9. Inside the <operationSets> element,
each operation set is given a name, a set of operations, messages used by those operations
and a list of data dependencies.

The name of the operation set corresponds to the name of the generated test case.
Each operation added to the set and the messages it uses are given identification numbers
for simpler reference later in the dependency section. An example of how operations and
messages are stored is given in Figure 10.

4.2.3 Data Dependency

The most important information in an operation set is the data dependency infor-
mation. In order to specify a dependency, the dependent particle have to be specified,
together with an XPath expression from which the intended value can be computed as
explained in Section 3.1.1. The dependent particle can be a simple datatype element, an
attribute or an operation. However, when the dependent particle is an operation, only
dependency of multiplicity type is applicable. More information on dependency type

25

<dependency type="..." targetMsgId="..." targetOpId="..." dependsOnMsgId="..." iteration="..." >
 <target> ... </target>
 <dependsOn> ... </dependsOn> OR <fixedValue> ... <fixedValue>
</dependency>

Figure 11: Data Dependency Specification

later.
The XML structure shown in Figure 11 is used to accommodate necessary information.

Nevertheless, not all fields are compulsory. Refer to Table 1 for the meaning of each field.
Further explanation on the types of data dependency and multiple invocations of an

operation is provided below.

Types of Data Dependency

The following three types of data dependency are supported for the moment.

• Substitution
The value of the dependent simple datatype element or attribute can be either a
fixed value or the result of an XPath expression. If it is the latter, then it depends
on other elements or attributes.

• Multiplicity
The number of occurrence of the dependent element or operation can be either a
fixed value or the result of an XPath expression. If it is the latter, then it depends
on other elements or attributes.

• Verification
This data dependency is introduced to support arbitrary verification of the output
data from the PUT. It does not influence the values of the generated data but merely
add a verification condition to the generated test case.

Some limitations exist in the specification of data dependency using XPath expression
based on different data dependency type. In both substitution dependency and multiplicity
dependency, the location path specified in the target field must only return one node.
Also, the final data dependency graph must be acyclic. Furthermore, in the multiplicity
dependency, the XPath expression specified in the dependsOn field must always returns
a numeric value. For verification dependency, no limitations apply as they are copied
verbatim to the resulting test case and have no influence on the data generation process.

26

Table 1: Fields in Data Dependency XML Structure
Field Meaning

type Type of data dependency. Supported values are
substitution, multiplicity and verification.
More explanation in the later part of this section.

targetMsgId / targetOpId The identification number of the dependent data
or operation, as assigned in the <messages> or
<operations> section.

dependsOnMsgId A space separated list of identification numbers of
messages being dependent on. Each number takes the
form of m or m-n, where m is the identification number
and n the iteration of invocation. More explanation on
multiple invocation in the later part of this section.

iteration Specify an invocation of an operation when it is in-
voked more than one time. If this attribute is omitted,
the dependency is applied to all invocations. More ex-
planation on multiple invocation in the later part of
this section.

target The XPath expression to locate the dependent parti-
cle, when this particle is a simple datatype element or
an attribute.

dependsOn The XPath expression to compute the intended value
for the dependent particle.

fixedValue A fixed value.

27

PUT Partner

.

.

.

.

.

first invocation

second invocation

n−th invocation

dependency

Figure 12: Data Dependency in a Multiple Invocation Scenario

Multiple Invocations of Operation

At times, operations in the operation set are invoked multiple times, for example,
when an operation has to be invoked once for each result returned from a search engine,
as shown in Figure 12. It would be convenient to be able to specify dependency on
a specific invocation basis. However, identification number of message alone does not
facilitate this type of specification since the same message is used no matter how many
times the operation is invoked. Therefore, another identification scheme is introduced,
which includes the iteration field and a special notation of identification number in the
form of m-n in dependsOnMsgId field.

For the example shown in Figure 12, let assume that the input message of the Partner
has the identification number mi and the output message has the identification number
mo. To specify dependency shown in the figure, we set the iteration field of the depen-
dency to n since it is the n-th iteration of invocation. Then, mo-2 is to be added to the
dependsOnMsgId list, to specify that the message used in the second invocation of the
method is what we want this dependency to depend on.

However, if the iteration field is omitted, then this dependency applies for all iterations.
On the other hand, if the “-n” part in dependsOnMsgId field are omitted, then they refer
to the current iteration being processed. This is useful in specifying dependency of the
output message of a partner on its input in the same iteration.

4.3 Test-related Data and Test Case Generation

This section discusses the algorithm used to generate test case corresponding to an
operation set. In comparison to test cases used to test programs written in traditional
languages like Java, the structure of a test case for BPEL unit testing is much simpler.

28

Basically it is composed of a series of operation invocations for the client and each involved
partners, together with data sent back from the client or partners to the PUT and some
verification conditions used to verify the output from the PUT.

The test case generation process is broken down to two steps. First, XML data used in
all operation invocations are generated based on the data dependency information speci-
fied in the BPEL Data Dependency Description document and the datatype information
available in WSDL files. Then, these generated data are used in the generation of test
case. The details of each step are further discussed in the following sections.

4.3.1 XML Data Generation

All messages are put into a dependency map where their message identification num-
bers are mapped to a list of the message identification numbers of those messages that
they depend on. Independent messages are mapped to an empty list. All messages in the
dependency map are looped through during the generation process. Figure 13 shows what
happened when a specific message is processed.

First, if the list that this message is mapped to is empty, then it is an independent
message, the whole structure of the XML data is created, with optional elements and
attributes generated and filled with random values of the appropriate types. The message
is then removed from the map indicating that it has been generated. On the other hand, if
it is a dependent message, then the map is checked to see if all messages that it depends on
have been generated, if that is the case, random data are filled in the generated structure
as in the case of independent message. However, data dependencies specified are iterated
and resolved to replace certain random data in this case. It is then removed from the
map. Nevertheless, if the messages that it depends on are not yet ready, this message is
skipped. The above steps are repeated until the dependency map is empty. Therefore,
skipped dependent messages are guaranteed to be generated at the end.

Table 2 shows the change of dependency map during the data generation process for
the first six messages involved in the BPEL Travel process used as example in Section
2.2. Data dependencies that exist in this example are shown in Figure 5. In this example,
messages 1, 4 and 6 are independent messages while the rest are dependent messages.
Therefore, data for these messages are generated in the following sequence.

1 → 3 → 4 → 5 → 6 → 2

In the first loop, data for message 1 is generated as it is an independent message. Then,
message 2 is skipped in this loop as the messages it depends on, i.e. message 4 and 6 have
not been generated. Data for message 3 onwards are generated since these messages are
either independent or all messages they depend on have been generated. Messages with
data generated are removed from the map, leaving message 2 only in the map at the end of

29

Generates Data

Independent Dependent

All dependent
data ready

Dependent data
not ready

Remove from map

Figure 13: Flow of XML Data Generation

the first loop. In the second loop, data for message 2 are generated since the dependencies
are all ready.

In fact, this is just a simplified explanation regarding XML data generation because
data dependency might be specified across multiple invocations as explained in Section
4.2.3. More details on this topic will be discussed in the later part of this section. Below
the implementation of XML data random generators is first presented.

Random Data Generation

In order to generate a random simple datatype XML data, classes shown in Figure 14
are implemented.

Supported XML Schema facets are all grouped under a general class named Facet.
Default values for specific primitive and predefined datatypes provided by XML Schema

Table 2: Example of Data Dependency Map
Message ID Dependencies Message ID Dependencies

1 [] 2 [4,6]
2 [4,6]
3 [1] −→
4 []
5 [1]
6 []

First Loop Second Loop

30

XmlDataGenerator

+ randomValue() : String

BooleanGenerator

StringGenerator

Facet

+ getEnumeration() : String[]
+ setEnumeration(enum : String[]) : void
 :
 :

− enumeration : String[]
− fractionDigits : int
− length : int
 :
 :

BooleanFacet

StringFacet

:
:
:

:
:
:

Datatype specific
Generators

Datatype specific
Facets

Figure 14: XML Data Generator Class

are then encapsulated in datatype specific facet classes, i.e. BooleanFacet, StringFacet,
etc. which inherent class Facet.

The interface of XML data generator class is abstracted by class XmlDataGenerator.
It holds an instance of class Facet so that the random data it generates, returned by the
method randomValue(), conforms to the constraints set by various facets encapsulated in
class Facet. This conformity is necessary as data not conforming to the constraints are
blocked by some BPEL engines before they reach the PUT. Datatype specific generators,
Boolean, StringGenerator, etc. inherent this class and generate data with the proper
datatype.

A controller class is needed for the generation of a complex XML data structure since
the above generators only generate simple datatype XML data. In this research, a sample
tool provided by the XMLBeans project [24] is used to control the generation of com-
plex XML data since XMLBeans is used in processing XML documents throughout the
implementation of the tool.

Resolution of Data Dependendency Across Multiple Invocations

Data dependency might occur across multiple invocations of an operation as explained
in Section 4.2.3. Figure 15 shows the table used to store generated message data according
to a specific iteration of invocations. For each message identification number (Message ID),
multiple instances of data are generated as necessary. A cell in the table represents an
instance of data for the specific message corresponding to a specific invocation. A shaded
cell in the table means that the instance has been generated.

31

Iteration

Message ID

Extra Message Data

1 2 n

1

2

m

Figure 15: Message Data Table

Data dependency across multiple invocations is handled in the following way, which is
an extension to the algorithm explained in the beginning of this section. The message data
table is initialized to have m rows and n columns, where m is the total number of messages
and n being the maximum value of the iteration field specified in the dependencies. In
this extended algorithm, multiple dependency maps, each for a specific iteration, are used.
Dependency maps are looped through to generate message data.

Message data are basically generated as explained before in an iteration. If cross-
invocation dependency exists as shown in Figure 15, where message 2 in the first iteration
depends on message 1 in the second iteration, message 2 in the first iteration cannot be
generated at this point since the message it depends on is not available yet. Therefore, the
generation of message 2 in the first iteration has to be skipped. This causes the dependency
map of iteration 1 not empty. The algorithm moves on to the generation of the next
iteration, which is iteration 2. All data in this iteration should be generated successfully
as there is no dependency in this iteration. This causes the dependency map of iteration 2
to be empty after all message data are generated. This continues until the n-th iteration is
reached. Again, since the dependency in this iteration is resolvable, the dependency map
for this iteration will be empty at the end. After all dependency maps are processed, empty
dependency maps are discarded to prevent further processing. Non-empty dependency
maps are then re-processed, so that previously unresolvable dependencies can be processed
again. However, when there is only one non-empty dependency map, the table is expanded
to include another new iteration to prevent indefinite loop caused by dependency on further
iterations. The above are repeated until all dependency maps are empty. In other words,
all message data are by then generated.

Extra Message Data

The message data table shown in Figure 15 is only filled in as far as needed to resolve
data dependency across multiple invocations. In the above example, only n iterations of

32

message data are generated. Since multiplicity dependency applies on operation, certain
operations might be invoked more than n times. Therefore, extra messages might need
to be created specifically for that operation. When an operation is to be invoked (n + 1)
times, extra message data for that operation have to be generated, filling in the right part
of the table shown in Figure 15. Since all dependencies should have been resolved by now,
the generation of these extra message data is comparatively simple.

4.3.2 Test Case Generation

A BPELUnit test case is made up of one clientTrack and several partnerTracks
corresponding to the client and partners of the PUT respectively. Inside a track, activities
which correspond to operation invocations can be defined.

Although different types of invocation are supported in BPELUnit, only “Send/Receive
Synchronous” and “Receive/Send Synchronous”, which corresponds to an operation with
both input and output are implemented in this tool for the moment. In contrast to
“Send/Receive Synchronous” which sends data before getting reply, “Receive/Send Syn-
chronous” first receive data before sending back reply. Therefore, “Send/Receive Syn-
chronous” is often used in the clientTrack while “Receive/Send Synchronous” is mostly
used in partnerTrack. The other types of invocations are “Send Asynchronous”, “Receive
Asynchronous”, “Send/Receive Asynchronous” and “Receive/Send Asynchronous”.

Composing BPELUnit test case from the above generated message data is a com-
paratively straight-forward task. First, the generated test case is given the name of the
operation set. Then, a clientTrack with a “Send/Receive Synchronous” activity and
partnerTrack, with one or more “Receive/Send Synchronous” activities, for each opera-
tion defined in the operation set are added to the test case. The number of activities in each
partnerTrack depends on the multiplicity dependency of the corresponding operation.

During the creation of tracks in the test case, data used in the send section which
corresponds to the data that will be sent to the PUT are taken from the message data
table explained in Section 4.3.1 while the pair of verification condition and the expected
value are taken from the specified verification dependencies in the operation set.

One test case is generated for each operation set. Test cases generated for a BPEL Data
Dependency Description document is grouped together as a BPELUnit test suite using
deployment information specified in the BPEL Data Dependency Description document.

4.4 Platform Independent Execution Logging

The platform independent execution logging subsystem of the tool is made up of three
components, i.e. the BPEL Process Augmenter, the Logger Web Service and the BPELU-
nit Runner Editor. The first two components are introduced in this section while the
BPELUnit Runner Editor is explained in Section 4.5

33

augmented

Figure 16: Sample of Augmentation

4.4.1 BPEL Process Augmenter

The BPEL Process Augmenter takes in a BPEL process source file, augment the basic
activities within it with a pair of surrounding invoke activities as presented in Section
3.2.1 and output an augmented BPEL process file. Here, basic BPEL activities refer to
invoke, assign, throw, wait, empty and rethrow. The PUT source can be parsed to
locate all these basic activities easily by using XPath expression. Figure 16 shows the
result of augmentation for the InvokeAmazon activity.

After the location of basic activities, a new scope is created for each of the basic
activities. A scope is simply a container used to group related activities in BPEL. By
using a scope, local variables can be used, and the resulting BPEL process will be easier
to understand. This scope takes over the place of the basic activity in the BPEL process.
Two local variables are created inside the scope. These variables are used in the invoke

activities that will be added before and after the basic activity as log request and log
response.

A sequence is then created in the scope. The name of the basic activity and the
status message “start” to indicate that the activity is going to be executed are set in

34

the log request using an assign activity. The first invoke activity is then added to the
sequence. Next, the basic activity is copied to the sequence. Lastly, the status message
“end” to indicate that the activity has bee executed successfully is assigned to the log
request using another assign activity, and the second invoke activity is added to the
sequence.

4.4.2 Logger Web Service

The Logger Web Service is implemented in the Java language using the Axis framework
[4]. It provides the following three operations.

Operation: log

This operation takes the name of the basic activity and a status message which can
be “start” or “end” as input and returns nothing. It writes an entry in the internal log
file which records the time of arrival of the request, the activity name and whether it is
entered or left. Below are the sample entries used in the actual implementation.

2008-01-07 18:17:56 JST,InvokeAmazon entered

2008-01-07 18:17:57 JST,InvokeAmazon left

Operation: setLogProfile

This operation takes the name of test suite, the name of test case and a status message
which can be “start” or “end” as input and returns nothing. It writes an entry in the
internal log file which records the time of arrival of the request, the name or the test suite
and the name of the test case if the status message is “start”. Below is a sample entry
used in the actual implementation. The activity log entries below this line all belong to
the specified test case.

[TestSuite1 >>> TestCase1 (2008-01-07 18:17:54 JST)]

Operation: getLog

This operation takes the name of a test suite and the name of a test case as input and
returns a list of activity execution information, which contains the name of the activity,
the total number of execution, the number of successful execution and the number of failed
execution. It obtains the execution information by analyzing the internal log file.

First, it locates the start of the specified test case by looking for the log entry sup-
posedly written by setLogProfile in the log file. It then breaks the activity log entries
written by the log operation under the specified test case into two groups, i.e. “entered”
and “left”. Number of activities with the same name is counted and recorded along the
way.

35

Finally, the operation builds the list of activity execution information by looping
through activities grouped under “entered”. For each activity execution information,
the name of the activity is first set. Then, the total number of execution is set to be the
number of times this activity is put into the “entered” group. The number of successful
execution equals to the number of times this activity is put into the “left” group and the
number of failed execution is the difference of the former two numbers.

4.5 Graphical User Interface

There are two components with graphical user interface implemented to provide graph-
ical access to the aforementioned functions. The BPEL Data Dependency Editor helps
developer create BPEL Data Dependency Description file and the BPELUnit Runner Ed-
itor provides an integrated tool to run generated test cases and get feedback on the test.
These tools are implemented as plug-ins for the Eclipse IDE [8]. In this section, the user
interfaces of these components are presented.

4.5.1 BPEL Data Dependency Editor

Figure 17 shows the main interface of the BPEL Data Dependency Editor. It consists
of four different sections, i.e. the PUT section, the partner WSDL section, the dependency
specification section and the dependencies list section. The PUT section and the partner
WSDL let developer specify basic information needed to produce test cases for BPELU-
nit, such as the name as well as the location of WSDL files of the PUT and partners.
The dependencies list section simply shows the data dependencies that are added so far.
Dependencies can be deleted from here if so desirable.

The main part of the editor is the dependency specification section, which is enlarged
and shown in Figure 18. On the upper left of the section, operation sets can be added
by clicking on the “Add” button. Figure 19 shows the dialog box which appears when
the “Add” button is clicked. It shows the list of available operations in all the services.
Multiple operations can be selected here to add operations to the operation set. When
the “OK” button is clicked, a simple input dialog box shows up to ask for the name of this
operation set. Added operation sets can be discarded with the “Delete” button. Finally,
when the “Gen” button is clicked, the test case generator will be invoked and one test
case will be generated for each operation set. These generated test cases are grouped into
a BPELUnit test suite which is saved inside the same folder as the current BPEL data
dependency document.

Data dependencies are defined and added at the bottom left of the section. First,
developer needs to specify the type of the dependency, which can be substitution, mul-
tiplicity and verification. Then, the target of the dependency is specified. This can be
done by right-clicking on an element, attribute or operation name shown in the tree on the

36

PUT Section Partner WSDL
Section

Dependency
Specification
Section

Dependencies
List Section

Figure 17: BPEL Data Dependency Editor

right part of the section, and select “Use selected as target” from the context menu. The
XPath expression pointing to the element will be automatically generated and set. Target
iteration of the message can be set using the spin box below the target field. The default
value is zero which means this dependency is effective for all iterations of the specified
message. Finally, the value this message depends on can be set either as a fixed value or
an XPath expression. However, it is necessary to specify this using the expression drop-
down list. The fixed value or the XPath expression can then be inputted into the text
box at the bottom. XPath expression to select a node in other messages can be done by
double-clicking on any element or attribute shown in the data structure tree. Whenever a
node in the tree is double-clicked, a simple dialog shows up to ask for the iteration of the
message the target depends on. Same as the target, this is defaulted to have a value of one.
After everything is specified, developer clicks on the “Add Dependency” button and the
dependency will be added to the list. However, when the target is a output from the PUT
and the dependency type is either substitution or multiplicity, a equivalent verification
dependency will be automatically added.

4.5.2 BPELUnit Runner Editor

BPELUnit Runner Editor provides an integrated user interface to access the BPEL
process augmentation function provided by the BPEL process augmenter, to call the
command-line version of BPELUnit to run the test cases generated by the test case gen-
erator and to display the execution information retrieved from the logger Web service.
Figure 20 shows the interface of the editor.

37

Figure 18: Dependency Specification Section in BPEL Data Dependency Editor

Figure 19: Selecting Related Operations in Operation Set

38

PUT
Augmentation
Section

BPELUnit
Test Suite
Runner Section

Execution
Information
Display Section

Figure 20: BPELUnit Runner Editor

Developers can access the above three functions through the three sections in the editor.
After specifying the location of the target BPEL process in the PUT augmentation section,
developer clicks on the “Transform” button and a new augmented BPEL process will be
generated in the same directory as the original process. Support to deploy the augmented
process to the BPEL engine is not available at the current version of the tool. Therefore
developers have to deploy the augmented process manually.

After deploying the BPEL process, developers come back to the editor, specify the
directory in which generated BPELUnit test suites are stored and click on the “Run
Tests” button in the BPELUnit test suite runner section. The command-line version
of BPELUnit is called to run all the BPELUnit test suites stored under the specified
directory.

When BPELUnit exits after all the tests are complete, the editor sends request to
the logger Web service to retrieve execution information of the tests. It then parses the
original BPEL process to create a list of all basic activities. Combined with the execution
information retrieved from the logger Web service, this list of activities is used to create a
table for each test case, showing the total number of execution, the number of successful
execution and the number of failed execution for each activity. Activities that have not
been executed in a test case are highlighted to alert the developer.

39

5 Evaluation

Evaluation has been carried out to demonstrate the usefulness of the tool. This section
describes the process of evaluation and its results. First, a case study was performed to
show that this tool can actually be used in generating test cases for BPEL processes.
Then, an experiment was done to compare this tool with the BPELUnit TestSuite Editor
[5, 21], which is currently the only tool available to create BPELUnit test cases.

5.1 Case Study: Testing the BPEL Travel Process

In the case study, we use the BPEL Travel process introduced as example in Section
2.2. We have tested the following aspects of the BPEL Travel process.

• Normal operation. This test case tests the process under normal condition in
which all partners work as expected. Sixty one dependencies were added to generate
the test case. All output data from the process are checked. No error is expected in
this test.

• Partner failure. This test case tests the fault handling ability of the process when
some of the partner services are not available due to network problems. The creation
of this test case is almost effortless as no dependency is needed. Operations of partner
services that fail are simply omitted from the operation set. Since there are no fault
handler implemented in the process, this test should fail with error.

• Zero result. This test case tests the process in situation where some of the partner
return zero results. Since there are five partner services which return results, the
maximum number of dependencies needed in a single test case is just five. Here the
travel agent service is set to return no result. Again, this test case should fail as this
situation is not considered during the creation of the process.

• Correct number of loops. This test case tests whether the number of invocations
of the currency exchange rate query service equals to the number of results returned
by the geographical information query service. This test case can be defined in two
ways. The number of results returned by the geographical information query service
can be given a fixed value, or it can be given a random positive value by depending
on an independent data which is restricted to have such value. Two dependencies
are needed here, one to specify the number of results returned by th geographical
information query service and one for the multiplicity of operation provided by the
currency exchange rate query service. This test should pass as long as the number
of results is not zero.

40

This case study shows that the tool is indeed flexible enough to handle common testing
scenario. It enhances developer’s productivity especially when only a small part of the
process is to be tested as demonstrated in the last three cases. Although more dependencies
are needed in the full test of the system, the specification of dependencies only needs to
be done once and many different sets of data can be generated randomly to test the
system thoroughly. Moreover, further enhancement to the implementation, such as direct
comparison of similar XML data structures can help minimize the number of needed data
dependencies in the future.

5.2 Experiment

An experiment is conducted to find out how the implemented tool benefits developers,
if any, compared to the existing tool in creating BPELUnit test cases. The following are
the points of consideration in this experiment.

• Time measure. Is there any difference in the time needed in creating the same
amount of test cases using the proposed tool and the existing one?

• Test case characteristics. Is there any difference in the characteristics of test
cases created with different tools?

• Common mistakes. What are the common mistakes made by the subjects in the
experiment? Does this change depending on the tool being used?

The following sections present the experiment setup, the results of the experiment and
finally the validity of the experiment.

5.2.1 Experiment Setup

Subjects. Subjects of the experiment are all first year master students majoring in
software engineering. Most of them have little or no experience to Web services and related
technologies. Self-evaluated skill levels of the subjects are shown in Table 3.

Software environment. The software environment used in the experiment was
Eclipse version 3.2 with BPELUnit version 1.0 plug-in and the BPEL Data Dependency
Editor plug-in installed. This environment was prepared by the experimenter and dis-
tributed to the subjects at the beginning of the experiment.

Hardware environment. All subjects used an 12-inch laptop computer with external
mouse attached during the experiment.

Procedure. In this experiment, subjects were required to create two sets of test
cases for two different BPEL processes, process A and process B. Specifications of these
processes and the involved partner services were provided to the subjects in print. Besides,

41

samples of all XML data involved are provided as clear text file. Test specifications which
describes which aspect of the processes should be tested in each test case were provided as
well. Questions were allowed throughout the experiment. The experiment was conducted
in the following steps.

1. A brief tutorial was given to the subjects. This tutorial introduced basic ideas about
Web services, XML, XPath and BPEL. The usage of each tool was also explained
through demonstration in which test cases for a sample process were created using
the different tools.

2. Subjects were required to study the specifications of the services and test specifica-
tions for the two processes, process A and process B carefully.

3. Subjects were required to create test cases for the two processes individually in
different orders and record the time needed in each task. The order in which they
work was decided randomly and is shown in Table 4. For example, Subject 1 was
required to create test cases for process A first using tool 1, and then test cases for
process B using tool 2. Tool 1 was BPELUnit TestSuite Editor and tool 2 was BPEL
Data Dependency Editor.

4. Subjects were required to fill in a questionnaire after they completed all tasks.

Target processes and test specifications. Process A is the loan approval process
shown as example in the BPEL specification [18]. It is commonly used as example in
various other work [13, 25]. Figure 21 shows the basic flow of the process. This process
first receives loan request from the client. If both the loan amount and the result of risk
assessment of the individual are low, the request is automatically approved. However, if
the loan amount is high, or the result of risk assessment of the individual is high, then a
further investigation is needed before the request is approved. The subjects were required
to create seven test cases to test the process under the following conditions. Names of the
test cases are written in brackets.

Table 3: Skill Level
Subject Skill Level (0-5) Unit Testing Experience

XML XPath BPEL

1 3 2 0 No

2 4 3 1 Yes

3 0 0 0 No

4 1 0 0 Yes

* Skill level of 0 means no experience at all, 5 means highly experienced.

42

loan amount < 10000

loan amount >= 10000

risk = ’low’risk = ’high’

Figure 21: The Loan Approval Process

• Loan amount is less than 10000 (<10000) and the risk assessment service returns
’low’. (LessLow)

• Loan amount is less than 10000 (<10000) and the risk assessment service returns
’high’. Both situations in which the loan approver service returns ’yes’ and ’no’ must
be tested. (LessHighYes and LessHighNo)

• Loan amount is exactly 10000. Both situations in which the loan approver service
returns ’yes’ and ’no’ must be tested. (10000yes, 10000no)

• Loan amount is more than 10000. Both situations in which the loan approver service
returns ’yes’ and ’no’ must be tested. (MoreYes, MoreNo)

On the other hand, process B is the Meta Search process presented in [21] as example.
Figure 22 shows the basic flow of the process. This process first receives search string from
the client and relays the search string to two search engines, Google and MSN Search. If
any results are returned, it further processes them eliminating duplicates along the way
and then returns them to the client. However, search engines which do not response or
return no result at all will be ignored. Maximum number of results can be set as parameter
in the request to the process. The subjects were required to create six test cases to test
the process under the following conditions, which are presented in [21] as well. Names of
the test cases are written in brackets.

• Only Google returns results. (GoogleOnly)

• Only MSN Search returns results. (MSNOnly)

43

Figure 22: The Meta Search Process

• The same number of results are returned by the two search engines. However, all
results are distinct. (DistinctResultsSameLen)

• Different number of results are returned by the two search engines. However, all
results are distinct. (DistinctResultsDiffLen)

• The Meta Search process does not return results more than specified. (MaxResults)

• There are overlapping results. (OverlappingResults)

5.2.2 Results and Discussion

The Time Measures

The time needed to create each test case using a specific tool is shown in Table 4. The
time varies greatly amongst subjects. This is because of the different skill levels of the
subjects.

44

In most cases, the time taken is close independent on the target process or the tool used
for a specific subject, except for Subject 1. Since the complexities of the two processes
are about the same, this close time measure suggests that while not being able to greatly
improve the productivity of developers, the suggested tool at least did not pose an initial
burden on developers. Considering the fact that once the data dependencies are defined,
infinite number of test cases with different combinations of data can be automatically
generated, this is an important positive result. For Subject 1, it is found out later in an
interview that this subject has spent most of the time taken to create test cases for process
B on figuring out the unspecified details of the process, such as the order in which results
are returned. Since this is not much related to the tool being used, this time measure is
therefore ignorable.

Test Case Characteristics

Table 5 and 6 show the number of dependencies created during the experiment for
each process using the BPEL Data Dependency Editor.

Table 5 shows the respective number of dependencies defined based on whether an
XPath expression is used or a fixed value is used. Since data dependencies defined using
fixed values put limitation on the variety of generated data, data dependencies defined
with XPath expression are therefore preferable. From the table, we can see that Subject 2
and 3 have a more balanced usage pattern. In all test cases, there are more dependencies
defined using XPath expression than using fixed values. On the other hand, Subject 1
and 4 tend to use fixed values exclusively. From the above observations, we believe that
Subject 2 and 3 had a better understanding of the proposed method while Subject 1
and 4 did not fully understand it. This belief is supported by the fact that Subject 2
had a comparatively higher skill level in related technologies while Subject 3 asked more

Table 4: Experiment Results
Subject Process Tool Time (min.)

1 A 1 73
B 2 174

2 B 1 37
A 2 30

3 A 2 73
B 1 99

4 B 2 53
A 1 56

45

Table 5: Number of Dependencies Created During Experiment Grouped by XPath Ex-
pression (XP) or Fixed Value (FV)

Process Test Case Subject
2 3

XP FV Total XP FV Total

A LessLow 3 3 6 3 3 6
LessHighYes 7 3 10 7 4 11
LessHighNo 7 3 10 7 4 11
10000yes 4 2 6 4 3 7
10000no 4 2 6 4 3 7
MoreYes 4 2 6 4 3 7
MoreNo 4 2 6 4 3 7

Process Test Case Subject
1 4

XP FV Total XP FV Total

B GoogleOnly 0 6 6 1 1 2
MSNOnly 0 6 6 1 1 2
DistinctResultsSameLen 0 6 6 3 0 3
DistinctResultsDiffLen 0 9 9 0 1 1
MaxResults 1 0 1 1 0 1
OverlappingResults 0 6 6 1 0 1

46

Table 6: Number of Dependencies Created During Experiment Grouped by Substitution
(S), Multiplicity (M) and Verification (V)

Process Test Case Subject
2 3

S M V Total S M V Total

A LessLow 2 0 4 6 2 0 4 6
LessHighYes 3 0 7 10 3 0 8 11
LessHighNo 3 0 7 10 3 0 8 11
10000yes 2 0 4 6 2 0 5 7
10000no 2 0 4 6 2 0 5 7
MoreYes 2 0 4 6 2 0 5 7
MoreNo 2 0 4 6 2 0 5 7

Process Test Case Subject
1 4

S M V Total S M V Total

B GoogleOnly 1 2 3 6 0 0 2 2
MSNOnly 1 2 3 6 0 0 2 2
DistinctResultsSameLen 3 0 3 6 1 0 2 3
DistinctResultsDiffLen 6 0 3 9 0 0 1 1
MaxResults 0 0 1 1 0 0 1 1
OverlappingResults 3 0 3 6 0 0 1 1

47

Table 7: Number of Verification Conditions Created During Experiment Based on Tool
Being Used

Process Test Case TestSuite Editor Data Dependency Editor
Subject 1 Subject 4 Subject 2 Subject 3

A LessLow 2 1 4 4
LessHighYes 3 3 7 8
LessHighNo 3 3 7 8
10000yes 2 2 4 5
10000no 2 2 4 5
MoreYes 2 2 4 5
MoreNo 2 2 4 5

questions during the experiment.
On the other hand, Table 6 shows the respective number of dependencies defined based

on data dependency type. From this table, we notice that there are cases in which Subject
1 and 4 only defined verification dependencies in a test case. This causes all data to
be generated completely randomly thus making it impossible to generate valid test case.
From this, we can further confirm that Subject 1 and 4 did not understand the proposed
method.

We chose test cases created for Process A as the base to compare the created test cases.
This is because all subjects created comparatively valid test cases for this process, except
for minor mistakes. We compare the number of verification conditions created in each test
case since verification conditions actually verify the correctness of the PUT and it is a
concept that exists in both methods. Table 7 shows the number of verification conditions
created by each subject using different tool in the test cases for Process A.

From Table 7, we can see that numbers of verification conditions created using BPEL
Data Dependency Editor are in all cases higher than those created using BPELUnit Test-
Suite Editor. By closer observation, test cases created using BPEL TestSuite Editor tend
to skip some unimportant output data from the PUT. On the other hand, test cases cre-
ated using the proposed BPEL Data Dependency Editor tends to include these checks.
This is believed to be the effect of showing the whole data structure of relevant data to
developers, making it easy to create conditions to check those data. This is supported by
the result of the questionnaire which gave high credits to the visibility of data structure.

In conclusion, although our proposed method is more difficult to learn compared to
existing tool for total beginners, we believe that developers who have basic knowledge in
Web services related technologies can pick up fast as demonstrated by Subject 2 and 3.
Moreover, resulting test cases created with our proposed tool tend to verify more output

48

data from the PUT.

Common Mistakes

Since all of the subjects have not much experience in BPEL and its related technologies
as shown in Table 3, mistakes were unavoidable. It is interesting to study the common
mistakes made depending on the tool being used.

In BPEL TestSuite Editor, most mistakes were related to XML namespace and XPath
specification needed in specifying data to be sent by partner services to the PUT and
verification conditions to verify output from the PUT. These mistakes include the syntax
error in using XML namespace, such as using multiple prefixes, the insertion of unnecessary
namespace prefix, omission of needed namespace prefix and use of undefined namespace
prefix. Moreover, skipping of elements within XPath expression and spelling mistakes in
elements’ names were noticed as well. Besides, although only once, a mistake was made
in which the loan approver service was specified to send the result of the risk assessor’s
result. The reason for this mistake is believed to be due to a wrong copy-and-paste since
the two results look similar.

On the other hand, in BPEL Data Dependency Editor, the above mistakes were al-
most non-existent. This is believed to be the effect of automatic insertion of location
paths by the tool. However, this tool is also not without problem. Since the subjects
of the experiment are all beginners and this is the first time they tried out the proposed
data dependency based approach, some necessary data dependencies were omitted in the
specification, making the resulting test cases incomplete. Other implementation related
mistakes were noticed, too. For example, although location paths are automatically in-
serted, developers still need to manually modify them to suit their needs in this imple-
mented tool. Therefore, trivial errors such as wrong capitalizations in fixed values were
unavoidable. Use of unimplemented functions, such as direct comparison of complex data
and partial XPath expression like “> /location/path” exist, too. These implementation
related mistakes provides some hints for further refinement of the tool.

In conclusion, the BPEL Data Dependency Editor has successfully solved most of the
problems in existing tool. However, since it is still a preliminary implementation so there
is still room for improvement to further assist developers to make less mistakes. In fact,
from the responses collected by questionnaire, most of the problems the subjects faced in
this experiment are originated from the imperfect implementation.

5.2.3 Validity of the Results

This section discusses the various validity issues of this experiment.

49

Strength of the Experiment Design

First, combinations of order in which tasks are carried out is designed so that the
influence of order can be avoided. These orders are then assigned to subjects randomly to
minimize the human factors. Test cases for each process is created twice using each tool
so that the results are less individual dependent.

Then, enough time to understand the specifications is given as that is not related to the
purpose of the experiment. Since all the subjects are inexperience in related technologies,
questions regarding those technologies are allowed throughout the experiment to minimize
the time taken in researching about the technologies which can have a bad effects on the
results of the experiment.

Finally, considering that simple XML data generation tools are freely available, samples
of involved XML data are provided in digital form to better imitate the real development
process.

Internal Validity Issues

Although many considerations have been made and the experiment has been carefully
planned, there are some issues which affect the validity of the results.

First of all, most of the subjects are beginners and inexperienced in related technologies.
Therefore, mistakes were unavoidable in the resulting test cases. It is hard to assess the
quality of test cases created in the experiment since they vary too much depending on
individuals. This makes time measure comparison difficult without having a concrete test
case quality assessment scheme in place. In this experiment, subjects had unlimited time
to complete their tasks, this might make them less efficient in the use of time. A clear
evidence of this is that not many questions were asked during the experiment as they
preferred to think their way out given the ample time. In future experiments, time might
need to be limited to avoid this problem.

Besides, developers are expected to actually run the created test cases while creating
them in the real world environment. This is not possible in this experiment since it was
thought to be a burden for the subjects to learn about yet another tool. Mistakes might
be less if they could run the test cases while creating them in the experiment.

Finally, from the fact that fixed values were favored over XPath expressions in data
dependency specifications, subjects might not have fully understood the concept of the
proposed approach. They were practicing the same method of creating test cases despite
that the tool at hand had changed.

50

External Validity Issues

The subjects were all beginners and the group was small with only four persons. There
is no firm evidence that the results of this experiment can be generalized to professional
BPEL developers, who are the target audience of the proposed method. Further stud-
ies which involve subjects from the professional field are needed to further evaluate the
effectiveness of the proposed approach and implemented tool.

51

6 Related Work

The proposed XML data generation technique is based on the technique proposed in
[23]. They use a knowledge base to store association information of each built-in simple
datatype with default facets definition and sets of candidate values based on test strategies.
However, no further information is provided about who is responsible for the preparation
of the knowledge base and how it should be done. In the proposed approach, the use of
this knowledge base is abandoned. Values are generated randomly to free developers from
the need to create such knowledge base.

Although not specifically designed for test data generation, ToXgene was presented by
D. Barbosa et al. [7] to generate large, consistent collections of synthetic XML documents.
With ToXgene, a user specifies certain properties of the intended data, such as probability
distributions with ToXgene Template Specification Language (TSL) which is a subset of
the XML Schema notation augmented with annotations. While this gives users good
control over the generated data, users need to learn another language and spend time on
writing good templates. This imposes additional burden on developers and thus avoided
in this work.

In the work of Yan et al. [13] and Yuan et al. [25], a BPEL process is first analyzed
and translated into extended control flow graphs from which test paths are extracted. Test
data are then generated using constraint solving tools or methods. While this might help
creating test cases that cover more paths, constraint solving is known to be hard and not
applicable at all time. However, test paths extracted with this method can be used to
identify operation sets which can then be used with BPEL Data Dependency Editor to
generate test cases which cover more parts of the process.

In [20], the use of a common API across BPEL engine vendors is suggested to provide
execution information to developers. While this suggestion sounds feasible, it might need
tedious work in the creation of such API. Therefore, in this research this problem is tackled
from another aspect, which involves only standard BPEL features.

On the other hand, Baresi et al. [14] proposed a non intrusive way of adding assertions
as comments into BPEL processes for process monitoring purposes. These comments are
then converted accordingly to BPEL activities at run time, without changing the functional
behavior of the original process. We have benefited from their work in the design of the
platform independent logging of execution information in our work.

52

7 Conclusion

In this thesis, an approach to alleviate the effort needed in generating test case with
coherent input and output data for BPEL unit testing is first presented. This is followed
by the proposal of a method to obtain execution information using only standard BPEL
features. In the proposed approach, developers are presented with structures of involved
XML data and required to define the relationship amongst them using XPath expression,
which BPEL developers should be familiar with. Coherent test-related data and test cases
are then generated automatically. To obtain execution information which helps developers
understand the effectiveness of their test cases, the BPEL process is first augmented to
include activities necessary for reporting execution information without its behavior being
changed. This augmented BPEL process is then compiled and deployed as usual. A logger
Web service is used to handle calls from the BPEL process to log the executed activities.
Execution information is then reproduced and presented to developers based on this log
and the source code of the BPEL process.

In the later part of the thesis, the design and implementation of a test case generation
tool for BPEL unit testing based on the proposed approach is presented. This tool is
then evaluated in two stages. First, a case study was performed to show that the tool can
actually be used in generating test cases for BPEL processes. Then, an experiment was
conducted to compare this tool with the existing one. We found that the time needed
to define necessary data dependencies to create a test case in the proposed approach was
about the same to the time needed to create a test case with existing tool. Considering the
fact that once the data dependencies are defined, infinite number of test cases with different
combinations of data can be automatically generated, this is an important positive result.

In the future, we would like to improve the user interface of the implemented tool to
be more intuitive to minimize the chance of making mistakes. Also, we plan to leverage
methods proposed by Yan et al. [13] and Yuan et al. [25] so that operation sets can be
extracted from the PUT automatically.

53

Acknowledgments

I am most indebted to my supervisor Professor Katsuro Inoue for his continuous sup-
port and supervision over the years. Without his help, experience and advice, this thesis
would never have reached completion.

I am very grateful to Associate Professor Makoto Matsushita and Assistant Professor
Takashi Ishio for their valuable comments and helpful criticism which have helped guide
and shape the development of this thesis.

I would also like to express my gratitude to Doctor Katsuhiko Yuura and Doctor
Hideaki Shinomi from Hitachi Consulting Company, Limited for their valuable comments
and advices on this thesis.

I would like to express my gratitude to all members of the Department of Computer
Science for their guidance.

Thanks are also due to many friends in the Department of Computer Science, especially
students in Inoue Laboratory.

54

References

[1] ActiveBPEL Designer. Available at http://www.active-endpoints.com/active-
bpel-designer.htm.

[2] Gustavo Alonso, Fabio Casati, Harumi Kuno, Vijay Machiraju, Web Services: Con-
cepts, Architectures and Applications. Springer, Berlin, 2004.

[3] Amazon Web Services. Available at http://aws.amazon.com/.

[4] WebServices - Axis. Available at http://ws.apache.org/axis/index.html.

[5] BPELUnit. Available at http://www.bpelunit.org/.

[6] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris
Ferris and David Orchard, Web Services Architecture, 11 February 2004. Available at
http://www.w3.org/TR/ws-arch.

[7] Denilson Barbosa, Alberto Mendelzon, John Keenleyside and Kelly Lyons, ToXgene:
A template-based data generator for XML. In Proceedings of the Fifth Workshop on
the Web and Databases (WebDB’02), pages 49-54, June 6-7, 2002.

[8] Eclipse.org. Avaiable at http://www.eclipse.org/.

[9] Erik Christensen, Francisco Curbera, Greg Meredith and Sanjiva Weerawarana,
Web Services Description Language (WSDL) 1.1, 15 March 2001. Available at
http://www.w3.org/TR/wsdl.

[10] Frank Leymann, Dieter Roller and Satish Thatte, Goals of the BPEL4WS Specifica-
tion. Available at http://www.oasis-open.org/committees/download.php/3249/
Original%20Design%20Goals%20for%20the%20BPEL4WS%20Specification.doc.

[11] James A. Whittaker, What Is Software Testing? And Why Is It So Hard? In IEEE
Software, pages 70-79, January/February 2000.

[12] James Clark and Steve DeRose, XML Path Language (XPath) Version 1.0, 16 Novem-
ber 1999. Available at http://www.w3.org/TR/xpath.

[13] Jun Yan, Zhongjie Li, Yuan Yuan, Wei Sun and Jian Zhang, BPEL4WS Unit Testing:
Test Case Generation Using a Concurrent Path Analysis Approach. 17th International
Symposium on Software Reliability Engineering (ISSRE’06), pages 75-84, 2006.

[14] Luciano Baresi, Carlo Ghezzi and Sam Guinea, Smart Monitors for Composed Ser-
vices. In Proceedings of the 2nd International Conference on Service Oriented Com-
puting (ICSOC’04), pages 193-202, November 15-19, 2004.

55

[15] Michael Ellims, James Bridges and Darrel C. Ince, Unit Testing in Practice. In Pro-
ceedings of the 15th International Symposium on Software Reliability Engineering (IS-
SRE’04), pages 3-13, November 2-5, 2004.

[16] NetBeans Enterprise Pack 5.5. Available at http://developers.sun.com/
jsenterprise/nb enterprise pack/.

[17] Eric Newcomer, Greg Lomow, Understanding SOA with Web Services. Addison-
Wesley Professional, 2004.

[18] OASIS WSBPEL Technical Committee, Web Services Business Pro-
cess Execution Language Version 2.0, 11 April 2007. Available at
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[19] Paul V. Biron and Ashok Malhotra, XML Schema Part 2: Datatypes Second Edition,
28 October 2004. Available at http://www.w3.org/TR/xmlschema-2/.

[20] Philip Mayer and Daniel Lübke, Towards a BPEL unit testing framework. In Pro-
ceedings of the 2006 workshop on Testing, analysis, and verification of web services
and applications (TAV-WEB’06), pages 33-42, July 17, 2006.

[21] Philip Mayer, Design and Implementation of a Framework for Testing BPEL Com-
positions. Available at http://www.se.uni-hannover.de/documents/studthesis/
MSc/Philip Mayer-Design and Implementation of a Framework for Testing

BPEL Compositions.pdf, September 11, 2006.

[22] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, Donald
F. Ferquson, Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR, April
1, 2005.

[23] Xiaoying Bai, Wenli Dong, Wei-Tek Tsai and Yinong Chen, WSDL-Based Automatic
Test Case Generation for Web Services Testing. In Proceedings of the 2005 IEEE In-
ternational Workshop on Service-Oriented System Engineering (SOSE’05), pages 207-
212, October 20-21, 2005.

[24] XMLBeans. Available at http://xmlbeans.apache.org/.

[25] Yuan Yuan, Zhingjie Lie and Wei Sun, A Graph-search Based Approach to BPEL4WS
Test Generation. In Proceedings of the International Conference on Software Engineer-
ing Advances (ICSEA’06), page 14, 2006.

56

[26] Zhongjie Li, Wei Sun, Zhong Bo Jiang and Xin Zhang, BPEL4WS unit testing:
framework and implementation. In Proceedings of the IEEE international Conference
on Web Services (ICWS’05), pages 103-110, July 11-15, 2005.

57

Appendix

A. XML Schema of BPEL Data Dependency Description

58

A XML Schema of BPEL Data Dependency Description

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ddeditor4bpelunit.plugins.eclipse.k_choy.↓

sel.ist.osaka_u.ac.jp/BpddSchema"
xmlns:tns="http://ddeditor4bpelunit.plugins.eclipse.k_choy.sel.ist.↓

osaka_u.ac.jp/BpddSchema"
elementFormDefault="qualified">
<complexType name="deploymentType">

<sequence>
<element name="put">
<complexType>

<sequence>
<element name="property" maxOccurs="unbounded"

minOccurs="0">
<complexType>
<simpleContent>

<extension base="string">
<attribute name="name"

type="string" />
</extension>

</simpleContent>
</complexType>

</element>
<element name="wsdl" type="string" />

</sequence>
<attribute name="name" type="string" />
<attribute name="type" type="string" />

</complexType>
</element>
<element name="partner" maxOccurs="unbounded"
minOccurs="0">
<complexType>

<attribute name="name" type="string" />
<attribute name="wsdl" type="string" />

</complexType>
</element>

</sequence>
</complexType>
<complexType name="operationSetsType">

<sequence>
<element name="OperationSet" maxOccurs="unbounded"
minOccurs="0">
<complexType>

<sequence>
<element name="operations">

<complexType>
<sequence>

<element name="operation"
maxOccurs="unbounded" minOccurs="0"
type="tns:operationType" />

</sequence>
</complexType>

</element>
<element name="messages">

<complexType>
<sequence>

<element name="message"
maxOccurs="unbounded" minOccurs="0"
type="tns:messageType" />

59

</sequence>
</complexType>

</element>
<element name="dependencies">

<complexType>
<sequence>

<element name="dependency"
maxOccurs="unbounded" minOccurs="0"
type="tns:dependencyType" />

</sequence>
</complexType>

</element>
</sequence>
<attribute name="name" type="string"></attribute>

</complexType>
</element>

</sequence>
</complexType>
<complexType name="operationType">

<attribute name="id" type="int" />
<attribute name="partner" type="string" />
<attribute name="service" type="QName" />
<attribute name="port" type="string" />
<attribute name="operation" type="string" />

</complexType>
<complexType name="messageType">

<attribute name="id" type="int" />
<attribute name="operationId" type="int" />
<attribute name="messageType" type="tns:messageTypeType" />

</complexType>
<simpleType name="messageTypeType">

<restriction base="string">
<enumeration value="input" />
<enumeration value="output" />

</restriction>
</simpleType>
<complexType name="dependencyType">

<sequence>
<element name="target" type="string" minOccurs="0" />
<choice>
<element name="dependsOn" type="string" />
<element name="fixedValue" type="string" />

</choice>
</sequence>
<attribute name="targetMsgId" type="int" />
<attribute name="targetOpId" type="int" />
<attribute name="dependsOnMsgId">
<simpleType>
<list itemType="tns:depOnMsgIdType" />

</simpleType>
</attribute>
<attribute name="iteration" type="int" />
<attribute name="type" type="tns:dependencyTypeType" />

</complexType>
<simpleType name="depOnMsgIdType">

<restriction base="string">
<pattern value="\d+(-\d+)?"></pattern>

60

</restriction>
</simpleType>
<simpleType name="dependencyTypeType">

<restriction base="string">
<enumeration value="substitution" />
<enumeration value="verification" />
<enumeration value="multiplicity" />

</restriction>
</simpleType>
<element name="bpelDataDependencies">

<complexType>
<sequence>
<element name="name" type="string" />
<element name="baseURL" type="string" />
<element name="deployment" type="tns:deploymentType" />
<element name="operationSets"

type="tns:operationSetsType" />
</sequence>

</complexType>
</element>

</schema>

61

