
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015
1185

PAPER

Approximating the Evolution History of Software from Source
Code

Tetsuya KANDA†a), Nonmember, Takashi ISHIO†b), Member, and Katsuro INOUE†c), Fellow

SUMMARY Once a software product has been released, a large number
of software products may be derived from an original single product. Man-
agement and maintenance of product variants are important, but those are
hardly cared because developers do not make efforts for the further main-
tainability in the initial phase of software development. However, history
of products would be lost in typical cases and developers have only source
code of products in the worst case. In this paper, we approximate the evolu-
tion history of software products using source code of them. Our key idea
is that two successive products are the most similar pair of products in evo-
lution history, and have many similar source files. We did an experiment to
compare the analysis result with actual evolution history. The result shows
78% (on average) of edges in the extracted trees are consistent with the
actual evolution history of the products.
key words: software evolution, software product line, visualization

1. Introduction

When developing a software product, clone-and-own ap-
proach is one of the major and easy ways to realize software
reuse [1]. Developers copy existing code or the whole of the
product and then add features, fix bugs, and so on. A soft-
ware product contains source files, images, documents, and
the other resources. In this paper, we define “a source file”
as a source code in the single file and “a software product”
as a set of source files.

The new version of the first product is released with
slightly different features, so it will have very similar files
with the first one. Management of such similar software
products is a very important task. They might have the same
problems or bugs, or developers can apply same improve-
ment in them. However, developers often copy and mod-
ify the software product without using version control sys-
tems (VCS) or other management techniques [2] since no
one knows whether the product would be successful enough
to apply many extensions and derive many variants. Using
#IFDEF macro in C language to describe product specific
features is one of the solutions, but it is believed to decrease
code readability. Clone-and-own approach also gives devel-
oper freedom of making changes, without considering mak-
ing an impact to existing projects.

Manuscript received August 19, 2014.
Manuscript revised January 14, 2015.
Manuscript publicized March 17, 2015.
†The authors are with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565–0871
Japan.

a) E-mail: t-kanda@ist.osaka-u.ac.jp
b) E-mail: ishio@ist.osaka-u.ac.jp
c) E-mail: inoue@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.2014EDP7286

Many re-engineering methods for existing software
products have been proposed [3]–[5]. Since analyzing a
large number of software products is a difficult task, Krueger
et al. suggested that developers should start their analysis
from a small number of software products [6]. Koschke
et al. proposed an extension of reflexion method to construct
a product line by incrementally analyzing products [4]. To
follow these reasonable approaches, developers must choose
representative software products as a starting point. If
the history of software evolution is available, developers
could recognize the relationships among the products and
choose representatives for their analysis. For example, com-
pare products between branches to extract common features
and product specific features. In the point of view of re-
engineering, understanding the evolution history of software
is also an important thing.

However, the history of software products is often not
available [7]. Software products are not always managed
under the VCS. If the software has branched and man-
aged independently, relationships between branches are not
recorded. Some of experts know the whole of the software
products, but their knowledge is often incomplete [8]. In the
worst case, developers only have access to source code of
each product, they cannot get version numbers nor release
date for some of the products.

We assume that two successive products are the most
similar pair in the products. Similar software products must
have similar source files so we analyze the source files and
count the number of similar source files between products.
We connect the most similar products and construct a tree.
This tree is an approximation of the evolution history of
software products and two successive products will be con-
nected. Our approach depends only on source files, so we
can analyze products whose evolution history is lost; no ver-
sion numbers, names or release dates.

This paper is an extension to our previous research [9].
The previous algorithm used the number of similar files only
and did not care how much the files are changed; both the
file pair with no changes and the file pair with small changes
are treated as similar files. The new contributions of this
paper are follows:
• We have introduced a weighted function between two

software products to reflect the effect of small changes.
• We extend an experiment target to programs written in

C and Java.
• We did a case study with two variants of Linux kernel

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



1186
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

and found out their origin.

2. Related Work

2.1 File Similarity

When comparing software products, similarity between
source files is a very important metric. To find out the same
or similar source code fragments, many code clone detec-
tion tools have been proposed [10], [11]. Using large-scale
code clone detection techniques, Hemel and Koschke com-
pared Linux kernel and its vendor variants [12]. They found
vendor variants included various patches, but the patches
are rarely submitted to the upstream. Another application
of code clone detection is detecting file moves occurred be-
tween released versions of a software system [7].

Yoshimura et al. visualized cloned files in industrial
products [13]. They have used an edit distance function as
a source file similarity to find out cloned files whose con-
tents are almost the same. Inoue et al. [14] proposed a tool
named Ichi Tracker to investigate a history of a code frag-
ment with source code search engines. It visualizes how
related files are similar to the original code fragment and
when they are released. With the visualization, developers
can identify the origin of the source code fragment or a more
improved version. Our approach enables similar analysis on
software products instead of source files.

We have assumed that two successive products are very
similar to each other. This observation is shown by Godfrey
et al. [15]. They detected merging and splitting of functions
between two versions of a software system. Their analysis
shows that a small number of software entities such as func-
tions, classes or files are changed between two successive
versions. Lucia et al. reported that most of bug fixes are im-
plemented in a small number of lines of code [16]. Since
these analysis reported that two successive versions are very
similar, we infer that the most similar pairs of products are
likely two successive versions.

2.2 Software Evolution

Yamamoto et al. proposed SMAT tool that calculates sim-
ilarity of software systems by counting similar lines of
source code [17]. They identify corresponding source files
between two software systems using CCFinder [10], and
then compute differences between file pairs. They applied
their tool to a case study of software clustering, and ex-
tracted a dendrogram of BSD family. The dendrogram re-
ported which OSs are similar to each other. Tenev et al.
introduced bioinformatics concepts into software variants
analysis [18]. One of them is phylogenetic trees, which vi-
sualizes the similarity relations. They constructed dendro-
gram and cladogram from six of BSD family for example of
phylogenetic trees.

They can show the relationship that which product is
most similar to another and which products were forked
from the release. Although their approaches and goals are

similar to our idea, our approach visualizes more concrete
relationships among products which are not shown in those
related works; which product was first released, their evolu-
tion direction, and so on.

2.3 Software Categorization

Several tools have been proposed to automatically catego-
rize a large number of software based on their domains such
as compiler, database, and so on. MUDABlue [19] classifies
software based on similarity of identifiers in source code.
MUDABlue employed latent semantic analysis which ex-
tracts the contextual-usage meaning of words by statistical
computations. LACT [20] uses latent dirichlet allocation in
which software can be viewed as a mixture of topics. LACT
used identifiers and code comments, but excluded literals
and programming language keywords, to improve catego-
rization. CLAN [21] focused on API calls. Its basic idea is
that similar software uses the same API set.

While all of these tools are able to detect similar or
related applications from a large set of software products,
our approach focuses on very similar products derived from
the same product, that are likely categorized into the same
category by these tools.

3. Approach

We define the “Product Evolution Tree” as a spanning tree of
complete graph which includes all input products and con-
nects most similar product pairs first. If many files are sim-
ilar between two products, it means that those products are
similar. A simple example of the tree is shown in Fig. 1.
Each node represents a software product. Each edge indi-
cates that a product is likely derived from another product
and the direction of derivation: which product is an ances-
tor and which product is a successor. A label of an edge
explains the number of similar files between products. In
Fig. 1, the product branched and there are more similar files
between A2 and A3 than A2 and B1.

We construct a Product Evolution Tree from source
code of products through four steps as follows.

1. We calculate file-to-file similarity for all pairs of source
files of all products.

2. We count the number of similar files between two prod-
ucts.

3. We construct a tree of products by connecting most
similar product pairs.

4. We calculate evolution direction based on the number
of modified lines between two products.

Fig. 1 An example of a product evolution tree.



KANDA et al.: APPROXIMATING THE EVOLUTION HISTORY OF SOFTWARE FROM SOURCE CODE
1187

3.1 File Similarity

We calculate similarity for all pairs of files across different
products. We do not consider file names because a file may
be renamed. To calculate the similarity of two source files,
we first normalize each of source files into a sequence of
tokens. In a normalized file fn, which is a sequence of to-
kens of file f , each line has only a single token. We remove
blanks and comments since they do not affect the behavior
of products. All other tokens including keywords, macros
and identifiers are kept as is. Given a pair of files (a, b),
their file similarity sim(a, b) is calculated as follows:

sim(a, b) =
|LCS (an, bn)|

|an| + |bn| − |LCS (an, bn)|
where |LCS (an, bn)| is the number of tokens in the Longest
Common Subsequence between an and bn. This is the de-
formed expression of sim(a, b) in [9] using |ADD(an, bn)| =
|an| − |LCS (an, bn)| and |DEL(an, bn)| = |bn| − |LCS (an, bn)|.

We have used a file similarity based on LCS, since we
could optimize the calculation as described in Sect. 3.6. An-
other reason is that LCS-based technique like UNIX diff is
one of the most popular choices in comparing source code.
There are famous metrics for measuring similarity of doc-
uments such as TF-IDF, jaccard similarity, and so on. Of
course, those metrics can be applied to the source files (we
are using jaccard similarity in optimization), but they are
based on the term frequency and do not consider the or-
der of elements. The following computation steps did not
depend on the definition of file similarity function; hence,
other methods such as code clone detection are also appli-
cable to compute file similarity.

3.2 Count the Number of Similar File Pairs

When the file pair has a higher similarity than a threshold, it
is a similar file pair. The set of all possible similar file pairs
S is defined as:

S (PA, PB, th)

= {(a, b) | a ∈ PA, b ∈ PB, sim(a, b) ≥ th}.
and the number of similar file pairs N between software
products PA and PB are defined as:

N(PA, PB, th) = |S (PA, PB, th)|.

3.3 Construction of the Tree

In this step, we construct a spanning tree of products. We
first construct a complete undirected graph G = (P, E), P
denotes that software product and E denotes set of edges that
connects all those products. From this graph, we pick edges
with maximum number of similar files and add to the tree,
without making a loop, until all nodes are connected. This
is the same operation of the well-known algorithm of the

minimum spanning tree. As a result, we get a spanning tree
S = (P, E′) of the graph G. E′ ⊆ E is a set of edges which
have the largest number of similar file pairs as follows:

∑

(Pi,Pj)∈E′
N(Pi, Pj, th).

If two or more edges have the same weight values, one of
them can be arbitrary selected. In our implementation, it
depends on the input order.

3.4 Evolution Direction

After a spanning tree is constructed, we set the direction on
each edge which explains the direction of evolution. Our hy-
pothesis is that source code is likely added, so we count the
amount of added code in two software products as follows:

ADD(PA, PB) =
∑

(a,b)∈S (PA,PB,th)

|bn| − |LCS (an, bn)|

where an and bn are the normalized source files. Evolution
direction is defined as follows:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ADD(PA, PB) > ADD(PB, PA)⇒ PA → PB

ADD(PA, PB) = ADD(PB, PA)⇒ PA − PB

ADD(PA, PB) < ADD(PB, PA)⇒ PA ← PB.

Direction “–” means no direction detected.
We put directions and labels which denote the number

of similar files on each edge of the tree. The Product Evolu-
tion Tree is completed through these four steps.

3.5 Weighted Function

The function N explains the number of similar source files.
When the software product series goes to maintenance
phase, there would be no drastic changes so that changes
will not decrease file similarity below the threshold. This
means that N cannot explain how much the source code is
changed. To reflect the amount of changes to the function,
we define another function Nw that weighting the function
N with sim:

Nw(PA, PB, th) =
∑

(a,b)∈S (PA,PB,th)

sim(a, b).

sim is already computed in the Step 1 so that we can get Nw

without vast amounts of calculating cost. We compare these
two functions in the experiment.

3.6 Optimization

To reduce the computation time, we introduced an imple-
mentation technique that calculates sim value only if it
seems greater than the similarity threshold. The technique is
based on the jaccard similarity of two documents. We intro-
duce the term frequency tf ( f , t) which represents how many



1188
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

times term t appears in file f . For example, suppose two tok-
enized files an = AAABB and bn = ABBBB, where A and B
are terms in the files. The term frequencies are tf (an, A) = 3,
tf (an, B) = 2, tf (bn, A) = 1, and tf (bn, B) = 4. Since
LCS (an, bn) can include at most one A and two Bs shared
by the sequences, the maximum length of LCS (an, bn) is 3.

The maximum length of LCS (an, bn) is calculated as:
∑

t∈T
min(tf (an, t), tf (bn, t))

and we can get maximum similarity

msim(a, b) =
∑

t∈T min(tf (an, t), tf (bn, t))∑
t∈T max(tf (an, t), tf (bn, t))

of each file pair (a, b) using term frequency. T represents
the set of terms appeared in all source files. The value of
sim(a, b) equals to msim(a, b) if all the common tokens ap-
pear in the same order in two sequences. If the order of
tokens is different from another sequence, then sim(a, b) is
smaller than msim(a, b). A fomula msim(a, b) ≥ sim(a, b) is
always true, hence we compute sim(a, b) only if msim(a, b)
is greater than the similarity threshold.

3.7 Simple Example

Here is a simple example of the algorithm. In this section,
we use two products shown in Fig. 2. We shorten “Product
1” to P1 and “File A of Product 1” to P1-A.

File Similarity We calculate all file pairs among P1

and P2. The similarity value among those producs are fol-
lows:

P1-A P1-B P1-C
P2-A 0 0 0
P2-B 0 0.33 0
P2-C 0 0 0.66

Count the Number of Similar File Pairs When we
set the similariy threshold th = 0.5, only (P1-C, P2-C) is
the similar file pair. The cost is N(P1, P2, 0.5) = 1 and
Nw(P1, P2, 0.5) = 0.66.

Construction of the Tree In this exaple, we have only
two products so we just connect them.

Evolution Direction In the similar file pair (P1-C, P2-
C), P2-C has one more token “lemon” than P1-C and no
unique token in P1-C. Please note that P1-B and P2-B shares
some code but those files are “not similar” so the algorithm
does not consider the changes between them.

As a result, ADD(P1, P2) = 1, ADD(P2, P1) = 0 so the
evolution direction is “P1 → P2”.

Fig. 2 An example input.

4. Experiment

We have implemented our approach as a tool and conducted
an experiment. The goal of the experiment is to evaluate
how accurately the Product Evolution Tree recovers the ac-
tual evolution history. We have used similarity threshold
th = 0.9 in this experiment, which is experimentally deter-
mined.

4.1 Dataset

We have prepared nine datasets using open source projects,
six of them are implemented in C and the other three of them
are implemented in Java. The complete list of the dataset is
on Table A· 1 and the input order for the tool is same as the
table.

PostgreSQL. It is a database management system. In
the evolution history of PostgreSQL, each major version
was released from the master branch after developing beta
and RC releases. After a major version had been released,
a STABLE branch was created for minor releases and the
master branch was used for developing the next beta ver-
sion. While each release archive contains a large amount of
files, we used only source files under “src” directory in this
experiment.

The evolution history of PostgreSQL is simple and
well-formed so we select four datasets from PostgreSQL to
evaluate some kind of situation.

Dataset 1: Pgsql-major is a dataset whose evolution
history is straight, i.e., it has no project forks. Dataset 2:
Pgsql8-all is a dataset whose evolution history is a tree of
a single project with a large number of variants. Dataset 3:
Pgsql8-latest is a dataset that includes only recent products.
If a product family has a long history, older products may
be no longer available for developers. Dataset 4: Pgsql8-
annually is another dataset that a full collection of products
is not available. Dataset 4 contains releases which have been
released around September from 2005 to 2012.

FFmpeg and Libav. They are libraries and related pro-
grams for processing multimedia data. Libav is forked from
FFmpeg and is developed by a group of FFmpeg developers.
They are independently developed, but similar changes have
been applied to both products.

Dataset 5: FFmpeg is a dataset whose project has been
forked to two projects. This dataset is created to evaluate
whether our approach can recover the evolution history of
forked projects or not.

4.4BSD, FreeBSD, NetBSD and OpenBSD. These
operating systems are derived from BSD, but they are now
independent projects. Figure 4 shows a part of the family-
tree for the versions selected for our dataset. According to
the tree, NetBSD-1.0 is not only derived from NetBSD-0.9
but also from 4.4BSD Lite. FreeBSD-2.0 is also based on
4.4BSD Lite. OpenBSD is the forked project of NetBSD.
4.4BSD Lite2 affects other BSD operating systems. For
each version, we used source files under “src/sys” directory.



KANDA et al.: APPROXIMATING THE EVOLUTION HISTORY OF SOFTWARE FROM SOURCE CODE
1189

Dataset 6: BSD is a dataset whose project has been
forked to more than three projects. The evolution history is
the most complex in our datasets and there are releases cre-
ated by merging source code from more than one product.
Since our approach extracts only a tree, our approach must
miss such merged edges.

Groovy. This is an agile and dynamic language for
Java Virtual Machine. In the evolution history of Groovy,
each release has own branch. Since they all branched just
before the release and there are no changes in source files
comparing with original branch, we can say that the evolu-
tion history of Groovy is very similar to that of PostgreSQL.
We used only source files under “src” directory.

Dataset 7: Groovy is a small dataset of Java applica-
tion. In the VCS, each release has branched from the main
branch, but it has completely same source code so we did
not consider such small branches.

Apache hibernate. This is an object relationship map-
ping library for Java. This evolution history is also similar
to PostgreSQL and Groovy. Each major version is devel-
oped on their own branches. We used only source files under
“hibernate-core” directory.

Dataset 8: hibernate is a large dataset of Java appli-
cation. This dataset contains 3 branches and 61 versions.
Some of them has special version names like “4.2.7SP” and
they makes the evolution history bit complex.

OpenJDK. This is an open-source implementation of
Java. The OpenJDK project firstly released OpenJDK7,
and implement OpenJDK6 from it. We analyze files under
“src/share/classes” directory.

Dataset 9: OpenJDK6 is a dataset which represents un-
usual evolution history. This dataset contains initial Open-
JDK6 (the copy of OpenJDK7) and its children. The prod-
uct starts with OpenJDK7 and modified to implement “old”
Java6 standard. So this dataset considered not to follow the
standard evolution; implementing new and rich features into
later version.

4.2 Results Overview

The correctness of the edges and labels is shown in Table 1
and Table 2. Column “#” denotes the dataset number. Col-
umn “H. (History)” denotes the number of edges in the evo-
lution history and “O. (Output)” denotes number of edges
in the Product Evolution Tree. Column “Matched Edges”
shows how many edges are matched with the actual his-
tory without considering direction. In other words, we only
checked the shape of the tree. Column “Matched Labels”
shows how many correct edges have correct direction. Col-
umn “Recall” indicates the proportion of correctly identified
edges to edges in an actual evolution history. N is the met-
rics that we have adopted in [9] but we improved and re-
moved bugs in the implementation so the result is different
from the previous paper.

We did not calculate precision in this experiment, since
the precision is higher than or the same as the recall. This is
because the number of edges in the Product Evolution Tree

Table 1 Result with N.

# H. O. Matched Edges /Labels Recall
1 13 13 13 (100%) 13 (100%) 100%
2 143 143 106 (74.1%) 104 (98.1%) 72.7%
3 37 37 24 (64.9%) 24 (100%) 64.9%
4 24 24 20 (83.3%) 20 (100%) 83.3%
5 15 15 1 (6.7%) 1 (100%) 6.7%
6 17 15 11 (64.7%) 11 (100%) 64.7%
7 36 36 28 (77.8%) 22 (78.6%) 61.1%
8 61 61 52 (85.2%) 46 (88.5%) 75.4%
9 15 15 8 (53.3%) 5 (62.5%) 33.3%

Table 2 Result with Nw.

# H. O. Matched Edges /Labels Recall
1 13 13 13 (100%) 13 (100%) 100%
2 143 143 137 (95.8%) 132 (96.4%) 92.3%
3 37 37 30 (81.1%) 30 (100%) 81.1%
4 24 24 20 (83.3%) 20 (100%) 83.3%
5 15 15 14 (93.3%) 14 (100%) 93.3%
6 17 15 11 (64.7%) 11 (100%) 64.7%
7 36 36 30 (83.3%) 24 (80.0%) 66.7%
8 61 61 53 (86.9%) 47 (88.7%) 77.0%
9 15 15 13 (86.7%) 7 (53.8%) 46.7%

is the same as or less than the number of edges in the actual
evolution history. If the dataset which consist of N products
does not contain the loop, the number of edges in the dataset
is N − 1 and the number of edges in our tree is also N − 1.
So the number of false positive edges is always the same
number of false negative edges and the precision is the same
value as the recall. Only the Dataset 6 contains the loop so
the number of false positive edges is smaller than the num-
ber of false negative edges and the precision is smaller than
the recall.

Comparing the result with N and Nw, Nw performed
better and Dataset 5 is a case that weighted function has
worked most effectively. When the project forks, it has al-
ready been in the maintenance phase and few changes are
adopted to the forked releases. As a result, all file pairs ex-
ceeds the similarity threshold 0.9 and the number of simi-
lar files between any two of the dataset are the same value
(N = 618) so almost all edges showed wrong evolution. Us-
ing weighted function Nw, we can reflect the effect of small
changes and the tree well approximates the evolution history
so we discuss the result with Nw below.

4.3 Patterns of Incorrect Edges

Even though our approach connects most likely similar
products, some edges are mismatched with the actual evo-
lution history. To analyze mismatches, we have categorized
incorrect edges in Product Evolution Trees into 5 patterns
as follows. In Fig. 3, each left graph shows an actual evolu-
tion history and each right graph shows an extracted Product
Evolution Tree. Thin edges are the connections that exist in
the actual history. Thick, dashed edges are extracted by our
approach, but they do not exist in the actual history.

P1: Version Skip. This pattern is found in three suc-
cessive versions; two edges v1 to v3 and v2 to v3 are detected
instead of a path from v1 to v3 via v2. Figure 3 (a) shows
an example. This pattern happens when v2 and v3 have the



1190
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

Fig. 3 Patterns of incorrect edges.

same Nw value from v1 or the Nw between v1 and v3 is large.
In addition, we classify edges into this category only when
the edge skips one version. If the edge skips two or more
versions, it classified into P5: Out of Place.

In Dataset 9 for example, tags “b13” and “b15” are
connected in the tree and “b14” is skipped. One devel-
oper said in his blog that “b15” is tagged just for mark as
switching VCS to mercurial. There are no difference in any
files between “b14” and “b15” so that Nw(b13, b14, 0.9) and
Nw(b13, b15, 0.9) are the same value.

P2: Misalignment of Branch. An edge connects two
branches but does not connect actually branched products.
In Fig. 3 (b), there are two branches A and B. While B1 was
actually forked from A1, the origin of branch B was recog-
nized as A2. In this pattern, A2 actually has more similar
files, comparing with B1 than A1.

In Dataset 2, almost all edges connecting branches are
not matched. We found that this is because branched prod-
ucts share the same changes. For example, 8.2BETA1 is
developed on the master branch as the next version of 8.1.0,
but extracted tree says this is the next version of 8.1.5. We
examined git repository and found that version 8.1.5 is re-
leased right after 8.2BETA1. The master branch developing
8.2BETA1 and STABLE branch for 8.1 received 225 com-
mits that are submitted on the same date with the same log
message, but there are only 28 commits unique to the master
branch. This fact also means that the actual evolution history
does not always show functional differences of products.

P3: Misdirection. An edge connects accurate prod-
ucts, but its label shows the reverse direction. It happens
when the size of source code or the number of source files
decreased by several activities such as refactoring and dele-
tion of dead code. In the other case, if two versions have the

Fig. 4 A family-tree of Dataset 6.

Fig. 5 A Product Evolution Tree of Dataset 6.

same source files, our approach cannot define the evolution
direction.

Many of this pattern show reversed direction, but other
edges around thems show accurate direction, so it is easy
to recognize that those edges connects exact products but
the direction is reversed. In the case of Dataset 8, two
of misdirection patterns, 4.1.2–4.1.2.Final and 4.3.3Final–
4.3.4Final, have no direction. A comment in VCS says that
there are no changes but the developer tagged them again.

P4: Missing Branch/Merge. Our Product Evolution
Tree cannot detect a branch or a merge of two products de-
rived from a single product. In Fig. 3 (c), we can see that the
Product Evolution Tree misses branching from version A1
to version A2 and B1 or merging from version B2 to A4.
In this pattern, one edge is missing but no wrong edges are
output. If an actual evolution history includes a merge (e.g.
Dataset 6), 100% recall is not achievable.

This pattern appears in Dataset 6. Figure 4 shows the
family-tree and Fig. 5 output of our approach. The Product
Evolution Tree included a merge relationship for NetBSD-
1.0. It is the next release of NetBSD-0.9 and includs many
source files from 4.4-BSD Lite. On the other hand, an edge
from 4.4BSD Lite2 to FreeBSD-3.0 is not detected because
the Product Evolution Tree does not allow closed paths. In
addition, Nw (4.4BSD Lite 2, FreeBSD-3.0, 0.9) = 40 in-



KANDA et al.: APPROXIMATING THE EVOLUTION HISTORY OF SOFTWARE FROM SOURCE CODE
1191

Table 3 Release date of BSD family.

BSD date

NetBSD 1.2 1996-10-04
OpenBSD 2.0 1996-10-18
OpenBSD 2.1 1997-06-01
NetBSD 1.3 1998-01-04

dicated that all except for 40 files are different between two
versions. The relationship from 4.4BSD Lite2 to FreeBSD-
3.0 in the family tree may not be captured by the source code
difference.

P5: Out of Place. This pattern is a falsely detected
edge which is not classified into previous patterns. There
are no relationship between the wrong edge and the actual
history.

4.4 Discussion

The result shows that 65% to 100% of edges without labels
and 47% to 100% of edges with labels are consistent with
the actual evolution history.

From the shape of the Product Evolution Tree, develop-
ers can learn where the starting point of the evolution is and
where they branched. Almost all of the latest products of
each branch are represented as leaf nodes, except Dataset 6.
Value of the function Nw also provides hints to understand
an evolution history. If a vertex has three edges and one
of them has a small number of similar files, it may indicate
branching and others may indicate the mainline.

Take a look at Fig. 5, FreeBSD-2.0, NetBSD-1.0, and
NetBSD-1.2 will get attention because they have more
than two edges. Leaf nodes 4.4BSD Lite, 4.4BSDLite2,
FreeBSD-3.0, NetBSD-0.8, NetBSD-1.3, and NetBSD-
1.2.1 also seem important. The tree suggests that OpenBSD-
2.1 is not a characteristic release. It is hard to find out that
they are important releases in this dataset.

If the time had passed from previous releases, they
would apply the same changes. In Dateset 6 for example,
OpenBSD Project is forked from NetBSD 1.1 but its first
official release is in October 1996. NetBSD 1.2 is released
just before OpenBSD 2.0 was released so we can imagine
that there are same changes in NetBSD and OpenBSD. The
same things can be said in OpenBSD 2.1 and NetBSD 1.3,
showed in Table 3.

Major error P3 is a counterexample for our hypothesis
that “source code is likely added”. One reason is that refac-
toring such as class splitting and merging have been applied.
Techniques for detecting refactoring [22] may be helpful to
remove incorrect labels caused by this reason. Another rea-
son is non-essential changes [23] such as deleting dead code
affect a large number of lines of code, while they are less
important than other modification tasks such as feature en-
hancement. We can conjecture some cases that source code
is decreased, but P3 was at most 17% (6 of 36 in Dataset 7)
of extracted edges in our experiment. Hence, our method for
determining the direction still worked effectively. We did
not use release dates since they are not always available, but

Table 4 Incorrect edge patterns with Nw.

Dataset P1 P2 P3 P4 P5 Total

1 0
2 4 5 2 11
3 5 2 7
4 4 4
5 1 1
6 2 4 2 8
7 1 5 6 1 12
8 4 3 6 14
9 2 6 8

if release dates are available, all evolution direction would
be correctly extracted if edges connect successive products.

Releases with no changes invoke error pattern P1 and
P3. Developers easily notice this is an error, since it is hard
to think that some files are fixed but total amount of deleted
and added code are the same amount.

The optimization reduces the execution time greatly.
Dataset 1 for example, we need 10 minutes for analysis us-
ing optimization. On the other hand, without optimization,
our tool runs over an hour for analyzing first four products.

5. Case Study

The result of experiment shows that our method well ap-
proximates an evolution history of software product from
their source code with high precision. In the case study, we
simulate the situation that finding out the origin of the vari-
ants. We continued using similarity threshold th = 0.9.

The target is the Linux kernel and two of their variants.
One variant is in the kernel repository, labeled “latest”, and
another variant is kernel files from F-05D Android smart-
phone†. We analyze those two variants with releases of the
Linux kernel and check the result with the version number
denoted in the Makefile.

Figure 6 (a) shows the overview of the Product Evo-
lution Tree and Fig. 6 (b) and Fig. 6 (c) shows the detail of
the tree around target variants. Those figures show that
the F-05D kernel was branched from 2.6.35.7 and latest tag
is attached just before 2.6.39 is released. We can see that
those two variants have different history. F-05D kernel was
branched and they have had some changes. “latest” tag is
assigned for development of 2.6.39 but there are still some
changes before 2.6.39 is released.

This result matches the version number denoted in the
Makefile and its product history. Makefile of F-05D says
that this is 2.6.25.7, and “latest” is tagged between 2.6.39-
RC7 and 2.6.39 in the repository. The result of the case
study shows that our approach is useful for detecting origin
of the variants. With the Product Evolution Tree, we can see
that which product is the origin and whether the product is
branched or not.

6. Threats to Validity

Targets of our experiment are restricted in the OSS with ver-
†http://spf.fmworld.net/oss/oss/f-05d/



1192
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.6 JUNE 2015

Fig. 6 A case study with Linux kernel and two variants.

sion control system and they have reliable their evolution
history. In other words, those projects are considered well
maintained. However, our Product Evolution Tree well re-
flects the development history compared with actual history
in some cases. For example, branched timing in the tree
follows functional changes in Dataset 2, and we could find
completely same versions with different tags in Dataset 7, 8,
and 9.

We have used a single threshold 0.9 in the case study,
which is determined by a small preliminary experiment.
While it works for 9 datasets, a different threshold may be
better for a different dataset.

7. Conclusions

To help developers understand the evolution history of prod-
ucts, we proposed a method to extract an approximation of
the evolution history from source code. It is defined as a tree
that connects most similar file pairs. Specifically, we count
the number of similar files with Longest Common Subse-
quence based source similarity and we construct a spanning
tree of complete graph which connects all input products.

As a result, 47% to 100% of edges are correctly re-
covered. We can identify branches and the latest versions
of products using our approach, even if the result included
incorrect edges. Our methodology and techniques used are
simple, but shows promising result in experiments.

Acknowledgements

This work is supported by Kakenhi kiban (S), No.25220003,

and Osaka University Program for Promoting International
Joint Research, “Software License Evolution Analysis”.

References

[1] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik, “Managing
forked product variants,” Proc. SPLC, pp.156–160, 2012.

[2] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K.
Czarnecki, “An exploratory study of cloning in industrial software
product lines,” Proc. CSMR, pp.25–34, 2013.

[3] D. Faust and C. Verhoef, “Software product line migration and de-
ployment,” Softw. Pract. Exp., vol.33, pp.933–955, 2003.

[4] R. Koschke, P. Frenzel, A. Breu, and K. Angstmann, “Extending
the reflexion method for consolidating software variants into product
lines,” Softw. Quality J., vol.17, pp.331–366, 2009.

[5] K. Yoshimura, F. Narisawa, K. Hashimoto, and T. Kikuno, “FAVE:
Factor analysis based approach for detecting product line variability
from change history,” Proc. MSR, pp.11–18, 2008.

[6] C.W. Krueger, “Easing the transition to software mass customiza-
tion,” Revised Papers from PFE, pp.282–293, 2001.

[7] T. Lavoie, F. Khomh, E. Merlo, and Y. Zou, “Inferring repository
file structure modifications using nearest-neighbor clone detection,”
Proc. WCRE, pp.325–334, 2012.

[8] D.L. Parnas, “Software aging,” Proc. ICSE, pp.279–287, 1994.
[9] T. Kanda, T. Ishio, and K. Inoue, “Extraction of product evolution

tree from source code of product variants,” Proc. SPLC, pp.141–150,
2013.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguis-
tic token-based code clone detection system for large scale source
code,” IEEE Trans. Softw. Eng., vol.28, no.7, pp.654–670, 2002.

[11] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-
paste and related bugs in large-scale software code,” IEEE Trans.
Softw. Eng., vol.32, pp.176–192, 2006.

[12] A. Hemel and R. Koschke, “Reverse engineering variability in
source code using clone detection: A case study for linux variants of
consumer electronic devices,” Proc. WCRE, pp.357–366, 2012.

[13] K. Yoshimura and R. Mibe, “Visualizing code clone outbreak: An
industrial case study,” Proc. IWSC, pp.96–97, 2012.

[14] K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe, “Where does this code
come from and where does it go? – Integrated code history tracker
for open source systems –,” Proc. ICSE, pp.331–341, 2012.

[15] M. Godfrey and L. Zou, “Using origin analysis to detect merging and
splitting of source code entities,” IEEE Trans. Softw. Eng., vol.31,
no.2, pp.166–181, 2005.

[16] Lucia, F. Thung, D. Lo, and L. Jiang, “Are faults localizable?,” Proc.
MSR, pp.74–77, 2012.

[17] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue, “Measuring
similarity of large software systems based on source code correspon-
dence,” Proc. PROFES, pp.530–544, 2005.

[18] V. Tenev and S. Duszynski, “Applying bioinformatics in the analysis
of software variants,” Proc. ICPC, pp.259–260, 2012.

[19] S. Kawaguchi, P.K. Garg, M. Matsushita, and K. Inoue, “MUD-
ABlue: An automatic categorization system for open source reposi-
tories,” J. Syst. Softw., vol.79, no.7, pp.939–953, 2006.

[20] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent dirichlet
allocation for automatic categorization of software,” Proc. MSR,
pp.163–166, 2009.

[21] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” Proc. ICSE, pp.364–374, 2012.

[22] P. Weißgerber and S. Diehl, “Identifying refactorings from source-
code changes,” Proc. ASE, pp.231–240, 2006.

[23] D. Kawrykow and M.P. Robillard, “Non-essential changes in version
histories,” Proc. ICSE, pp.351–360, 2011.



KANDA et al.: APPROXIMATING THE EVOLUTION HISTORY OF SOFTWARE FROM SOURCE CODE
1193

Appendix A: Dataset
Table A· 1 Datasets.

# Name Language Included versions/tags #product #file #LOC

1 Pgsql-major C PostgreSQL: 7.0, 7.1, 7.2, 7.3, 7.4, 8.0.0, 8.1.0, 8.2.0, 8.3.0,
8.4.0, 9.0.0, 9.1.0, 9.2.0, 9.3.0

14 9,451 4,680,600

2 Pgsql8-all C PostgreSQL: 8.0BETA1 – 8.0BETA5, 8.0RC1 – 8.0RC5, 8.0.0
– 8.0.26, 8.1BETA1 – 8.1BETA4, 8.1RC1, 8.1.0 – 8.1.23,
8.2BETA1 – 8.2BETA3, 8.2RC1, 8.2.0 – 8.0.23, 8.3BETA1
– 8.3BETA4, 8.3RC1 – 8.3RC2, 8.3.0 – 8.3.21, 8.4BETA1 –
8.4BETA2, 8.4RC1 – 8.4RC2, 8.4.0 – 8.4.14, 8.5ALPHA1 –
8.5ALPHA3

144 96,448 48,478,395

3 Pgsql8-latest C PostgreSQL: 8.0.20 – 8.0.26, 8.1.17 – 8.1.23, 8.2.17 – 8.2.23,
8.3.15 – 8.3.21, 8.4.8 – 8.4.14, 8.5ALPHA1 – 8.5ALPHA3

38 26,232 13,401,899

4 Pgsql8-annually C PostgreSQL: 8.0.4, 8.0.9, 8.0.14, 8.0.18, 8.0.22, 8.0.26, 8.1.5,
8.1.10, 8.1.14, 8.1.18, 8.1.22, 8.2.5, 8.2.10, 8.2.14, 8.2.18,
8.2.22, 8.3.4, 8.3.8, 8.3.12, 8.3.16, 8.3.21, 8.4.1, 8.4.5, 8.4.9,
8.4.14

25 16,816 8,488,128

5 FFmpeg C FFmpeg (before fork): v0.5 – v0.5.3 FFmpeg (after fork):
n0.5.5 – n0.5.10 LibAV: v0.5.4 – v0.5.9

16 9,872 3,952,273

6 *-BSD C BSD: 4.4BSD Lite, 4.4BSD Lite2 FreeBSD: 2.0, 2.0.5, 2.1,
2.2, 2.3 NetBSD: 0.8, 0.9, 1.0, 1.1, 1.2, 1.2.1, 1.3 OpenBSD:
2.0, 2.1

16 16,204 6,050,462

7 Groovy Java Groovy: 2.0.0BETA2 – 2.0.0BETA3, 2.0.0RC1 – 2.0.0RC4,
2.0.0 – 2.0.8, 2.1.0BETA1, 2.1.0RC1 – 2.1.0RC3, 2.1.0 –
2.1.9, 2.0.0BETA1, 2.2.0RC1 – 2.2.0RC3, 2.2.0 – 2.2.2,
2.3.0BETA1 – 2.3.0BETA2

37 34,797 3,962,603

8 Hibernate Java Hibernate: 4.0.0Alpha1 – 4.0.0Alpha3, 4.0.0Beta1 –
4.0.0Beta5, 4.0.0CR1 – 4.0.0CR7, 4.0.0Final, 4.0.1, 4.1.0Fi-
nal, 4.1.1 –4.1.2, 4.1.2Final – 4.1.12Final, 4.1.5SP1, 4.2.0CR1
– 4.2.0CR2, 4.2.0Final – 4.2.12Final, 4.2.0SP1, 4.2.7SP1,
4.3.0Beta1 – 4.3.0Beta5, 4.3.0CR1 – 4.3.0CR2, 4.3.0Final –
4.3.5Final

62 271,372 19,767,324

9 OpenJDK6 Java OpenJDK6: b00 – b15 16 112,922 19,858,640

Tetsuya Kanda received the master’s de-
gree in information science and technology from
Osaka University in 2013. He is a Ph.D. student
at Osaka University. His research interests are
software evolution and source code analysis. He
is a member of the IPSJ and IEEE.

Takashi Ishio received the Ph.D. degree in
information science and technology from Osaka
University in 2006. He was a JSPS Research
Fellow from 2006–2007. He is now an assistant
professor of computer science at Osaka Uni-
versity. His research interests include program
analysis and program comprehension. He is a
member of the IEICE, IPSJ, JSSST, IEEE, and
ACM.

Katsuro Inoue received the B.E., M.E., and
D.E. degrees in information and computer sci-
ences from Osaka University, Japan, in 1979,
1981, and 1984, respectively. He was an as-
sistant professor at the University of Hawaii at
Manoa from 1984–1986. He was a research as-
sociate at Osaka University from 1984–1989, an
assistant professor from 1989–1995, and a pro-
fessor beginning in 1995. His interests are in
various topics of software engineering such as
software process modeling, program analysis,

and software development environment. He is a member of the IEEE, the
IEEE Computer Society, and the ACM.


