Graph-Based Approach for Detecting Impure Refactoring
from Version Commits

Shogo Tsutsumif, Eunjong Choi*, Norihiro Yoshida*, and Katsuro Inouet

TGraduate School of Information Science and Technology, Osaka University, Japan
tGraduate School of Information Science, Nara Institute of Science and Technology, Japan
*Graduate School of Information Science, Nagoya University, Japan
{s-tutumi,inoue}@ist.osaka-u.ac.jp, *choi@is.naist.ac.jp, *yoshida@ertl.jp

ABSTRACT

Impure refactoring is defined as a refactoring operation that
was saved together with non-refactoring changes or several
refactoring operations were saved at the same location stored
in source code repositories. Many of existing approaches are
not correctly viable for detecting impure refactoring. To
mitigate this problem, we propose an approach that detects
impure refactoring from commits stored in the repositories
using a graph search algorithm. In case study, we applied
our approach to two actual classes in Apache Xerces project
and confirmed the feasibility of the approach.

CCS Concepts

eSoftware and its engineering — Maintaining soft-
ware;

Keywords

impure refactoring; graph search; refactoring detection

1. INTRODUCTION

Refactoring histories provide insights to not only prac-
titioners but also researchers. In particular, there is an
increasing interest in the relationship between refactoring
operations and source code quality [1, 11]. So far, a num-
ber of approaches that detect refactoring operations between
two commits have been proposed [2, 8, 9, 10]. These ap-
proaches usually detect each refactoring operation by ana-
lyzing source code changes stored at commits in source code
repositories.

Many of the existing approaches are not correctly viable
when a refactoring operation was saved together with non-
refactoring changes or several refactoring operations were
saved at the same location. These refactoring operations
are called impure refactoring [3]. To alleviate this prob-
lem, the approaches detecting several refactoring operations
conducted at the same location have been proposed [5, 7].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

IWoR’16, September 4, 2016, Singapore, Singapore

(© 2016 ACM. 978-1-4503-4509-5/16/09...$15.00
http://dx.doi.org/10.1145/2975945.2975949

13

public TarEntry(File file) {
this ();
this.file = file;

String fileName = file.getPath();

this.linkName =
this.name =

new StringBuffer (“”);
new StringBuffer (fileName) ;
if (file.isDirectory()) {
this.mode = DEFAULT_DIR_MODE;
this.linkFlag = LF_DIR;

if (this.name.charAt (this.name.length() - 1) !=
this.name.append(“/”);
}

} else {

WA IR

}

(a) Previous commit(755230)

public TarEntry(File file) {
this();
this.file = file;
String fileName = normalizeFileName (file.getPath()):
this.linkName = new StringBuffer (“”);
this.name = new StringBuffer (fileName) ;
if (file.isDirectory()) {
this.mode = DEFAULT_DIR_MODE;
this.linkFlag = LF_DIR;
int namelength = name.length();

if (nameLength == 0 || name.charAt (nameLength - 1) != ‘/’){
this.name.append(“/");
}
} else {
}
}
private static String normalizeFileName (String fileName) {
(b) Revised commit(755231)
Figure 1: Example of impure refactor-
ing applied to a constructor of a class

org.apache.tools.tar.TarEntry
Ant SVN repository.

in the Apache

For instance, Mahouachi et al. proposed a search-based ap-
proach that detects a sequence of refactoring operations us-
ing structural metrics [7]. Hayashi et al. proposed an ap-
proach that detects multiple refactoring operations using a
graph search technique [5]. This approach considers a com-
mit of a program as a state and detects the refactoring opera-
tions by searching appropriate path between two states (i.e.,
previous and revised commits) and estimating the heuristic
distances.

However, to our knowledge, there is no approach that
detects refactoring operations that are saved together with
non-refactoring changes in the same version. For example,
when ‘ Rename Method’ refactoring and ‘the addition of error
handling’ have been applied to the same method and then
saved at the same commit, existing tools only detect ‘Re-
name Method’ operation and fail to detect non-refactoring
changes, the addition of error handling. An example of im-
pure refactoring stored in the Apache Ant Subversion (SVN)
repository is described in Figure 1'. Note that we changed
layouts of this example to save space. Manual investiga-
tion of this impure refactoring code fragments reveals that
developers performed ‘Eztract Method’ refactoring (under-
lined) along with a non-refactoring change (bold) at the
same method in a class named as TarEntry at the same
commit. However, these non-refactoring changes cannot be
detected by existing refactoring detection approaches be-
cause existing approaches are only able to detect refactoring
operations.

To tackle this problem, we propose an approach that de-
tects impure refactoring by extending Hayashi and his col-
leagues’ work. The fundamental difference is that their work
only detects several refactoring operations whereas our ap-
proach detects not only several refactoring operations but
also refactoring operations and non-refactoring changes that
were saved at the same location at the same revision. Our
approach, at first, detects refactoring operations using a
graph search algorithm and test cases from previous and
revised versions. Then, it identifies non-refactoring changes
based on structural differences between the version yielded
by the application of the detected refactoring operations and
revised versions. We also applied our approach to actual
classes stored in the Apache Xerces? SVN repository and
confirmed the feasibility of the approach. The primary con-
tributions of this paper can be summarized as follows:

e We present an approach to automatically detect im-
pure refactoring. To our knowledge, this is the first
attempt to detect impure refactoring from commits.

e We applied our approach to commits of actual classes
stored in source code repository and confirmed that
our approach can successfully detect impure refactor-
ing.

2. APPROACH

The proposed approach takes the previous and the revised
commits and a test suite of previous commit as input, then
outputs the information of refactoring operations and non-
refactoring changes between the commits. The proposed
approach is comprised of two steps; At first, it detects refac-
toring operations using a graph search algorithm and a test
suite. Then, it detects non-refactoring changes by comput-
ing the structural differences between state yielded by the
application of the detected refactoring operations and the
current commit. The approach assumes a commit of the
program as a state, and a refactoring operation as a tran-
sition operator. Furthermore, a new state is generated by
applying refactoring operations to a current state.

"https://svn.apache.org/viewvc?view=revision&revision=
755231
Zhttp:/ /xerces.apache.org/

14

class Example{
void example (
int a = 3

) o
+ 4;
}

Original Source Code

[class,

(r)y
{, int, a, =, 3, +, 4, i, }, }]

Example, {, void, example,

Token sequences

(divided by comma (,))

Figure 2: Example of token sequence convert

2.1 Detecting Refactoring with Graph Search

This step detects refactoring operations using a graph
search algorithm, A* search [12]. The A" search estimates
the total cost of a path involving a state n using a heuristic-
based evaluation function. In this study, refactoring detec-
tions are formalized as states N (a set of program), initial
state s, € N (previous commit), and finial state s, (cur-
rent commit). Moreover, a next state is generated by the
value of an evaluation function. The refactoring detection is
comprised of following five steps:

Stepl. Initialize priority queue and then enqueue a pair of
initial state and its value of evaluation function (so, eo)
into the queue.

Step2. Dequeue a pair which has the smallest evaluation
value and the dequeued state is defined as s;. The
refactoring detection is terminated if the queue is empty.

Step3. Derive the candidates of refactoring operations
01, ...,0n by comparing the differences between s; and
Sm. If there is no differences between them, the refac-
toring detection is terminated and then the s; value is
output.

Step4. Generate new states do(si),01(s:),... by applying
refactoring operations 41, ..., 0, into s;, and then com-
pute the evaluation function of each state.

Step4. Enqueue the gernated states in the previous step
and values of evaluation function and then revert to
Step 2.

Note that if refactoring detection does not finish within 600
seconds, the detection is terminated and then s;, which has
the smallest evaluation value, is output.

After the detection is finished, a test suite of initial state
is exercised with s; to check the modification of external be-
haviors of sop and s;. If a test suite is succeed, implies that
external behavior of sp and s; was preserved, the approach
proceeds to the next step described in Section 2.2. Mean-
while, if external behavior of the program is modified, the
detection is terminated because this means that the refac-
toring operations are falsely detected.

2.1.1 Computing the Value of Evaluation Function

This study uses a evaluation function to select the next
state. The value of evaluation function is computed using
Levenshtein distance, which measures the minimal amount
of changes necessary to transform one sequence of items into
a second sequence of items [6]. In this study, levenshtein
distance d; between token sequences of the methods that
shares the same method name is computed.

Let’s assume that new states (do(s:),01(s1),...) generated
in Step 4 is (A1, A2, ..., Ay) and final states is (B1, Ba,
..., Bp), the number of tokens of A; and A; is a; and b;,
respectively, then the value of evaluation function is defined
as follows:

Z?:l di
> max(ai, by)

Note that a value of evaluation function takes [0, 1].

2.1.2 Terminating Duplicated States

If a method A is pulled up after a method B is pulled
and a method B is pulled up after method A is pulled, they
will arrive at the same state. Therefore, the search should
be terminated if it arrive at the same state after the second
search. For alleviating this problem, the search is terminated
if the hash value of the source code and the value of the
evaluation function are exactly matched.

To compute a hash value of source code, code fragment is
divided into each line of source code, and then a hash value
is generated using method hashCode () in String Class
in Java 8 API. For example, when a line is comprised of the
following tokens:

(807 S1, ~~-,Sn—1)

The value of hashCode () is computed as follows:

31" Mso + 31" st + o+ 50
2.2 Detecting Non-refactoring Changes

After refactoring detection is successfully performed, the
structural differences between s; and s,, are regarded as the
non-refactoring changes. In this study, the non-refactoring
changes are detected as follows:

1. Convert source code of s; and s,, into a token sequence,
respectively.

2. Compute levenshtein distance between the token se-
quences of matched members

2.2.1 Convert Source Code into Sequence of Tokens

Our proposed approach converts the source code of s; and
S$m into token sequences. The purpose of converting source
code into token sequences is to ignore comments and white
space. Figure 2 depicts an example of converting a Java
source code into token sequences.

2.2.2 Match Members

The order of members in the class is not always fixed
between the states. Therefore, this approach only computes
structural differences between the matched members. For
field declarations, they are defined to be matched if they

15

have the same field name. For methods, they are defined
to be matched if they have the same method name and the
parameter type.

3. CASE STUDY

To show the feasibility of our approach, we applied it to
two actual classes Document Impl and CoreDocument Impl
which are stored between two commits ‘318022’ and ‘318023’
in the Apache Xerces SVN repository®. This section dis-
cusses the result of case study and then explains threats to
validity of the case study.

3.1 Result

Figure 3 depicts an overview of the search. Note that
the refactoring operations were only detected in the class
DocumentImpl. In this figure, circles represent searched
states and the numbers on the circles represent the value of
the evaluation function. Moreover, arrows represent state
transitions and the search was conducted in the order of
number written on the arrow. The detailed information is

3http://svn.apache.org/viewvc/xerces/java/

Table 1: Refactoring operations detected in a class
DocumentImpl

No Refactoring Target member

1 F Hashtable userData

2 M setUserData(NodeImpl, Object)
3 M getUserData(Nodelmpl)

4 F Hashtable userData

5 M getUserData(NodeImpl)

6 F Hashtable userData

7T M getUserData(NodeImpl)

8 F Hashtable userData

9 M setUserData(NodeImpl, Object)
10 F Hashtable userData

1 M setUserData(Nodelmpl, Object)
12 M setUserData(NodeImpl, Object)
13 M getUserData(Nodelmpl)

Table 2: Non-Refactoring changes detected from a
class DocumentImpl

Motivation types #Removed #Added

Addition of import statements 3 0
Additions of method bodies 9 0
Total 12 0

Table 3: Non-Refactoring changes detected from a
class CoreDocumentImpl

Motivation types #Removed #Added
Addition of import statements 3 0

Additions of method bodies 18 0
Changes of method bodies 12 47
Addition of field declarations 3 0
Addition of methods 585 0
Total 621 47

Figure 3: Overview of the search

shown in the Tables 1, 2, and 3. Table 1 illustrates the
state transition diagram on the search. In this table, each
number in the column ‘No’ corresponds to the order number
shown in Figure 3 and The column ‘Refactoring’ represents
the detected refactoring operations. In this column, ‘F’ rep-
resents ‘Pull Up Field’ and ‘M’ represents ‘ Pull Up Method’.
As seen in this table, ‘Pull Up Field” and ‘Pull Up Method’
refactoring operations were detected by our approach.
Moreover, Tables 2 and 3 depicts non-refactoring changes

detected from Document Impl and CoreDocument Impl classes,
respectively. In these tables, column ‘#Removed’ and ‘#Added’

represents a number of removed and added tokens, respec-
tively.

After the detection, we manually analyzed the source code
of the classes Document Impl and CoreDocument Impl and
confirmed that our approach accurately detected ‘Pull Up
Field’ and ‘ Pull Up Method’ refactoring operations. For non-
refactoring changes, we also manually checked the source
code and confirmed that 12 tokens (class DocumentImpl)

and 621 tokens (class CoreDocument Impl) were really deleted

and 47 tokens (class CoreDocument Impl) were really added
between the commits.

3.2 Threats to Validity

The result of case study might be lack of generalities.
Even though our approach accurately detects impure refac-
toring, the result might change because we only apply our
approach to two classes in the Apache Xerces project. As a
future work, we plan to apply the approach to other com-
mits and software systems to achieve the generality of our
proposed approach.

16

4. SUMMARY

We proposed an approach that detects impure refactoring
using a graph search algorithm, a test suite, and structural
differences. We applied our approach to two actual classes
in the Apache Xerces SVN repository and confirmed the
feasibility of the approach.

For future work, we are plan to apply our proposed ap-
proach to additional open source software systems and in-
dustrial software systems.

5. ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Num-
bers JP25220003, JP26730036, JP16K16034, JP15H06344.

6.
1]

REFERENCES

G. Bavota, A. D. Lucia, M. D. Penta, R. Oliveto, and
F. Palomba. An experimental investigation on the
innate relationship between quality and refactoring. J.
Syst. Softw., 107(C):1-14, Sept. 2015.

B. Biegel, Q. D. Soetens, W. Hornig, S. Diehl, and

S. Demeyer. Comparison of similarity metrics for
refactoring detection. In Proc. of MSR, pages 53-62,
2011.

C. Gérg and P. Weissgerber. Detecting and visualizing
refactorings from software archives. In Proc. of IWPC,
pages 205-214, 2005.

A. E. Hassan. The road ahead for mining software
repositories. In Proc. of FoSM, pages 48-57, 2008.

S. Hayashi, Y. Tsuda, and M. Saeki. Search-based
refactoring detection from source code revisions.
IEICE Trans. Inf. Syst., E93-D(4):754-762, apr 2010.
V. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Soviet Physics
Doklady, 10:707, 1966.

R. Mahouachi, M. Kessentini, and M. O Cinnéide.
Search-based refactoring detection. In Proc. of
GECCO Companion, pages 205—206, 2013.

N. A. Milea, L. Jiang, and S.-C. Khoo. Vector
abstraction and concretization for scalable detection of
refactorings. In Proc. of FSE, pages 86-97, 2014.

K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim.
Template-based reconstruction of complex
refactorings. In Proc. of ICSM, pages 1-10, 2010.

Z. Xing and E. Stroulia. Refactoring detection based
on umldiff change-facts queries. In Proc. of WCRE,
pages 263-274, 2006.

N. Yoshida, T. Saika, E. Choi, A. Ouni, and K. Inoue.
Revisiting the relationship between code smells and
refactoring. In Proc. of ICPC, pages 48-57, 2016.

W. Zeng and R. L. Church. Finding shortest paths on
real road networks: The case for A*. Int. J. Geogr.
Inf. Sci., 23(4):531-543, Apr. 2009.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

