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Abstract—Code review is of primary importance in modern
software development. It is widely recognized that peer review is
an efficient and effective practice for improving software quality
and reducing defect proneness. For successful review process,
peer reviewers should have a deep experience and knowledge with
the code being reviewed, and familiar to work and collaborate
together. However, one of the main challenging tasks in modern
code review is to find the most appropriate reviewers for
submitted code changes. So far, reviewers assignment is still
a manual, costly and time-consuming task. In this paper, we
introduce a search-based approach, namely RevRec, to provide
decision-making support for code change submitters and/or
reviewers assigners to identify most appropriate peer reviewers
for their code changes. RevRec aims at finding reviewers to
be assigned for a code change based on their expertise and
collaboration in past reviews using genetic algorithm (GA). We
evaluated our approach on a benchmark of three open-source
software systems, Android, OpenStack, and Qt. Results indicate
that RevRec accurately recommends code reviewers with up to
59% of precision and 74% of recall. Our experiments provide
evidence that leveraging reviewers expertise from their prior
reviews and the socio-technical aspects of the team work and
collaboration is relevant in improving the performance of peer
reviewers recommendation in modern code review.

I. INTRODUCTION

Software code review is a disciplined engineering practice

that has been commonly employed for several years in both

industrial development and the open-source software (OSS)

community [1]. Peer code review is a manual inspection of a

code change, i.e., patch, by third-party developers, before it is

committed to the project’s code base, in order to detect and

correct potential defects and ensure quality software [2], [3].

Modern code review (MCR) has become a vital and essen-

tial practice in contemporary software development [4], [5].

Taking the Linus’s Law that [6]:

“many eyes make all bugs shallow”,

the OSS community have incorporated MCR, where devel-

opers utilize dedicated tools that facilitate the code review

process, e.g., Gerrit1, Codestriker2, and ReviewBoard3. It is

widely recognized that peer code review is a valuable and

effective practice that can be applied to software development

at all stages of the life cycle, to improve software qual-

ity, decrease defect-proneness, share knowledge and increase

learning through rich communication [3], [7], [8].

1https://code.google.com/p/gerrit/
2http://codestriker.sourceforge.net/
3http://www.reviewboard.org/

Although MCR tools provide efficient and automated tech-

niques to support the code review process, still a significant

amount of human effort involved. In typical software projects,

author of a code change need to invite/assign reviewers mainly

based on their expertise with the changed files and previous

review collaborations, in order for their change to be merged

[5], [9]. One of the main challenges in code review is to find

the most appropriate reviewers for pending reviews in a timely

manner. Inappropriate reviewers assignment may lead to an

inaccurate, time consuming and non effective review process.

Identifying appropriate peer reviews is a non-trivial

decision-making task for developers. If a patch affects several

modules in the project, then generally the review should be

performed by several peers of each affected module. For

example, in VMware, most of the projects require at least two

independent reviewers for every commit [10]. Moreover, since

a file could be edited by multiple developers, and reviewed by

multiple reviewers, it is difficult to find and assign appropriate

reviewers if the number of files involved and the changes

within them are large.

In code review, the reviewers expertise with the code

fragments being reviewed is crucial to ensure time effective

and high quality review. Recent studies showed that when

reviewers have a priori knowledge of the context and the

code, they complete reviews more quickly and provide more

valuable feedback to the author [8], [11]. On the other hand, as

code review is basically a human process involving personal

and social aspects, thus the socio-technical factor plays an

extremely improtant role in finding peer reviewers [9], [12].

Ultimately, efficient reviewers recommendation tools are

essential to provide quality review and reduce the time taken

for the review process. Unfortunately, so far, the field of

peer reviewers recommendation in MCR is still in its infancy,

and there has been little effort in building automatic recom-

mendation techniques. The first attempts in addressing this

problem, [5], [13], and [14], formulated the peer reviewers

recommendation problem from a single perspective to find and

rank candidate reviewers based on their experience with the

code being reviewed. Reviewers are ranked and recommended

in an independent manner, neglecting the socio-technical factor

related to the relationships between review contributors which

is a crucial aspect that affects the review quality as pointed

out by many researchers and practitioners [9], [12], [15]–[17].

In this paper, we propose a novel approach, namely RevRec,

that formulates the peer code reviewers recommendation prob-
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lem as a combinatorial search-based optimization problem.

The aim is to find appropriate reviewers for a given patch

based on their expertise with the patch files and their prior

review collaboration (co-review) rate with the review request

submitter. To this end, we used genetic algorithm (GA) [18], in

order to explore this large search space of possible reviewers

combinations. Indeed, the search space is not determined only

by the number of reviewers in a project, but also with the

number of files, modules and contributors in the project.

The reviewer expertise refers to the frequency and recency

of reviews performed by a reviewer to the patch’s files or

module. The frequency is a count of the number of participated

review comments, while the recency refers to the time span

since the most recent review on each file. Indeed, as expertise

may change over time, we consider both reviews frequency

and recency as primary factors to capture the reviewers ex-

pertise. Second, the concept of review collaboration refers the

number of times the candidate reviewers previously reviewed

for a code author. Indeed, as the code review process is mainly

a human process, we thus leverage the socio-technical aspects

of the teamwork and collaboration which has been proved as

important factor to the review quality and efficiency [9], [12],

[19]. Indeed, complex combinatorial decision problems, such

as peer reviewers recommendation, are best suited to search-

based software engineering (SBSE) [20].

The main contributions of the paper can be summarized as

follows:

1) We introduce a search-based formulation for the peer

code reviewers recommendation problem. Our approach,

RevRec, aims at finding, among a large list of reviewers,

an appropriate set of reviewers, to review a code change,

by leveraging reviewers expertise and collaboration.

2) We evaluate our approach on a benchmark of three

open-source projects, Android, OpenStack, and Qt using

Gerrit code review. We report the results of an empirical

study on an implementation of our approach with a com-

parison with available state-of-the-art techniques on peer

reviewers recommendation. Results indicate that RevRec

significantly outperforms three existing techniques by

accurately recommending code reviewers with up to

59% of precision and 74% of recall.

3) We present the results of a second empirical study

that serves as ‘sanity check’ to compare our GA-

based approach with existing search techniques includ-

ing simulated annealing (SA), particle swarm optimiza-

tion (PSO), and random search (RS) for solving the

problem.

The rest of the paper is structured as follows. Section II

describes necessary background. Section III introduces our

RevRec approach for reviewers recommendation. Section IV

describes the design of the empirical study we employ to eval-

uate our approach, while Section V presents and discusses the

obtained results. Section VI describes the threats to validity.

Section VII outlines the related work. Finally, in Section VIII,

we conclude and describe our future research directions.
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Refactoring of smart-types defined in DSL
* MuranoType and MuranoObjectParameterType smart types

were merged into a single smart type because their functionality overlap
to a large degree. New smart type is called MuranoObjectParameter

* Other smart types were renamed to have the same name pattern:
   ThisParameterType -> ThisParameter,
   InterfacesParameterType -> InterfacesParameter
* For MuranoObjectInterface instead of saying obj.data().propertyName
   the syntax now is obj.properties.propertyName
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(c) Changed files in the submitted code change.

Fig. 1: A Gerrit-based review example4 from the OpenStack

project (code change #283653).

II. BACKGROUND AND MOTIVATION

A. Modern code review

Recently, the lightweight modern code review process has

been adopted by many open source (e.g., Android, Qt, Open-

Stack) and industry (e.g., Google, Microsoft, Cisco) projects.

In contrast to the formal peer review, the modern peer review

process is a tool-based management system. It entails contrib-

utors submitting patches of code that need to be reviewed and

approved before they are committed to the code base.

To give the reader perspective, Figure 1 presents an example

to describe the typical review process using the Gerrit tool

based-code review within the OpenStack. The figure shows the

Gerrit interface of the code change #2836534 which is related

to some refactoring operations. This code change refers to a

4https://review.openstack.org/#/c/283653/, For privacy reasons, we have
hide some details from the interface, and used alias instead of the original
developer names.
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patch that is being reviewed before it is merged into the code

base which follows four main phases.

1) Submission phase - Owner (Stephan) creates a

change and submits it for a code review. At this stage,

the review is labeled ‘open’. Open reviews can be

accessible by any reviewer to make review comments.

2) Review phase - Reviewers (Alex and David) start

to make comments on the code, which may lead to

additional change revisions. In this case, the change

consisted of 6 revised patch sets.

3) Testing and Verification phase - Running concurrently

in the review phase, reviewers Jack and Michel, run

tests and verify that the change will not cause failure

in other parts of the code base. In this example, both

reviewers are ‘bot’ applications that perform the tests

automatically.

4) Decision Phase - Once satisfied with the state of the

patch and all the testing and verification have been com-

pleted, reviewers Paul and David approve the patch.

Both reviewers have higher roles in the project, thus are

able to approve this review. As shown, both reviewers

need to score either +1 or +2 to approve the change.

Negative scores such as -1 or -2 wwill lead to the

change being rejected. The change is then successfully

merged into the codebase. It is then labelled as ‘merged’.
Rejected changes are labeled as ‘abandoned’.

From the example in Figure 1, due to the nature of OSS,

we find that attracting reviewers to be assigned to a review

can be tedious, especially in large projects. Each reviewer has

different roles, expertise, experience, and collaboration which

are critical factors for review to be completed in a timely

and efficient manner. For instance, finding a reviewer who

has had experience involving the same files in that particular

modules of the code base, and preferably familiar with the

code author.Also, a reviewer who is able to approve a code

change is critical in order for the change to be successfully

merged. To help with this tedious task of selecting appropriate

reviewers, we propose a recommendation technique to explore

and search for possible reviewers to perform a given review.

B. Search-Based Software Engineering

Search-Based Software Engineering (SBSE) consists of the

application of a computational search to solve optimization

problems in software engineering [21]. The term SBSE was

coined by Harman and Jones in 2001, and the goal of the field

is to move software engineering problems from human-based

search to machine-based search, using a variety of techniques

from the metaheuristic search and evolutionary computation

paradigms [21], [22]. SBSE provides best practice in formu-

lating a software engineering problem as a search problem,

by defining a suitable solution representation, fitness function,

and solution change operators. Indeed, there are a multitude

of search algorithms ranging from single to multi-objective

techniques that can be applied to solve that problem [20].

C. Genetic algorithms

Genetic Algorithms (GA) [18] are computer algorithms that

search for good solutions to a problem from among a large

number of possible solutions. These computational paradigms

were inspired by the mechanics of natural evolution, including

survival of the fittest, reproduction, and mutation.

GAs begin with a set of random population of candidate

solutions, also called individuals or chromosomes. Each in-

dividual of the population is evaluated by a fitness function

that determines a quantitative measure of its ability to solve

the target problem. The exploration of the search space is

achieved by the evolution of candidate solutions using selec-

tion and genetic operators such as crossover and mutation.

The selection operator ensures selection of individuals in the

current population proportionally to their fitness values, so that

the fitter an individual is, the higher the probability is that

it be allowed to transmit its features to new individuals by

undergoing crossover and/or mutation operators.

A new population is created from individuals of an old pop-

ulation in hope of getting a better population. Solutions which

are chosen to form new solutions (offspring) are selected

according to their fitness. The more suitable the solutions are

the bigger chances they have to reproduce. This process is

repeated until some condition is satisfied. The result of GA

(the best solution found) is the fittest individual produced

along all generations.

III. REVREC: SEARCH-BASED PEER REVIEWERS

RECOMMENDATION

In this section, we describe our approach, RevRec, for

recommending appropriate reviewers for code changes. Then,

we describe our formulation of the peer reviewers recommen-

dation problem as a search-based optimization problem.

A. Approach overview

Our approach aims at supporting review request submitter

to find and invite appropriate reviewers in order to reduce

the time taken for the review process and provide quality

review. Figure 2 presents an overview of the RevRec approach.

RevRec takes as input a review request which consists of a

patch, i.e., a set of changed files submitted by a developer,

and the history of completed code reviews recorded from

the project’s review tool, e.g., Gerrit. As output, RevRec

recommends a set of peer reviewers that are most appropriate

to review the submitted change. Our approach used genetic

algorithm to find the best set of reviewers based on two

heuristics (1) the reviewers expertise with the submitted patch

files, and (2) the reviewers collaboration with the review

request submitter.

1) Expertise. The reviewers expertise is one of the main

factors for a successful code review. It is widely accepted

that if the reviewers have a priori knowledge of the code,

they complete reviews more quickly and effectively [8],

[11].

2) Collaboration. Each reviewer has his own collaboration

sub-team, i.e., social network, within the project. It is
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common that, in large projects, same reviewer(s) fre-

quently review the patches from a particular developer.

Moreover, it is common that sub-groups of reviewers

use to collaborate together, i.e., co-review, based on

repositories or modules. In practice, the reviewer(s) and

the code author communicate more frequently with each

other than with other peers, which may form a friendship

[9], [19]. On the other hand, code review can be a

source of conflict, as a code author may consider a

reviewer’s rejection or critique of his code to be unfair

and become offended. Thus code authors often invite or

assign reviewers from their peers that they used to work

with [9].

Reviews history

Search-based Reviewers 
Recommendation

(Genetic Algorithm)

Search-based Reviewers 
Recommendation

(Genetic Algorithm)

Recommended
Reviewers

Review Request

Code Review
Submitter

Fig. 2: RevRec overview.

We believe the peer reviewers recommendation problem

is well suited for applying a search-based technique to aid

developers find appropriate reviewers to their patches. Indeed,

the number of reviewers combinations is not determined only

by the number of reviewers in a project, but also with the

number of files, modules and contributors in the project. Even,

if a code change consists of one single file, there may be

several reviewers that may have expertise with it.

Problem complexity. Finding the appropriate reviewers for

a patch is not an obvious task for reviewer assigners as the

number of possible reviewers can be very large causing a

combinatorial problem. The search space tends to be enormous

as the number of possible reviewers combinations is equals at

least to N =
(
k
n

) × p = k!
n!(n−k)! × p, where N counts the

number of different possibilities of how a set of k reviewers

can be identified from a given set of n reviewers working on

the project, and p is a count of the number of files in the

project. Note that the order of the reviewers is not considered.

Indeed, the search space is prohibitively large for an exhaus-

tive approach. Therefore, we consider a meta-heuristic search

and use a genetic algorithm to find a near-optimal solution

representing the most appropriate set of reviewers.

B. Problem formulation

This section gives definitions and characteristics of the peer

reviewers recommendation problem.

It is assumed that for an existing software system S, there

is a set of developers, D = {d1, ..., dn}, and set of reviewers

R = {r1, ..., rm}. The software system consists of a set of q
source files, F = {f1, ..., fq}. A patch P , i.e., code change, is

submitted by a developer d ∈ D, and itself consists of a set of

t changed files Fp = {fp1 , ..., fpt}, and denoted by P 〈d, Fp〉.
The set of possible peer reviewers for the patch P is denoted

by: Rp = {r1, ..., rk}
where Rp ⊆ R, and 1 ≤ k ≤ |R|.

Each reviewer ri has (i) his own expertise with the files Fp,

and (ii) his review collaboration history with the developer d,

i.e., the review request submitter, and also with the rest of

other co-reviewers Rp \ ri in the project.

Our approach consists of the two following components:

Reviewer expertise model (RevRecRE). Each reviewer ri
has a degree of expertise with each of the patch files Fp that

can be represented as a vector. Each vector’s dimension is

associated with its relative file fpj , and denoted by:

Eri = {Exp(ri,fp1 ), ..., Exp(ri,fpt )}
where Exp(ri,fpj ) denotes the expertise of the reviewer ri with

the file fpj
.

Formally, the expertise of the reviewer ri with the patch

files Fp is denoted as E(ri, Fp) and calculated as follows:

E(ri, Fp) =
∑

∀fpj∈Fp

Exp(ri, fpj ) (1)

where Exp(ri, fpj
) refers to the expertise of the reviewer ri

with the file fpj
∈ Fp.

To calculate Exp(ri, fpj
), we collect all previous reviews

Rev performed by ri that are (i) closed, i.e., marked as

“Merged” or “Abandoned”, and (ii) created before the patch

P . For each file fpj in the patch P , we check if similar files

are previously reviewed in each collected review in Rev. Our

similarity measure is based on file path similarity. For each file,

we first split its path into components using file separator (i.e.,

slash character) as a delimiter. Each component represents a

module, directory, package or file in the system. Thereafter,

we use a camel case splitter to break down each component

to its constituent tokens. Then, the file path similarity measure

(Sim) represents the common tokens between two files fa and

fb based on the Jaccard similarity, as follows:

Sim(fa, fb) =
|tokens(fa) ∩ tokens(fb)|
|tokens(fa) ∪ tokens(fb)| ∈ [0, 1] (2)

where tokens(fi) is the function that returns all tokens in a

file path fi as described above.

Our expertise model combines two main aspects. For each

previously reviewed file, the reviewer expertise combines the

review comments (1) frequency, and (2) recency. These two

aspects are calculated as follows.

1) Comments frequency (CF ). The CF of the reviewer ri
for a file f is a simple count of the number of comments

of all its similar files F having a Sim score greater than

a given threshold k, to be set up by the review request

submitter. Formally, CF is given as follows.

CF (ri, f) =
∑

∀fj∈F

comments(ri, fj) (3)

where comments(ri, fj) is a count of the number of

review comments participated by the reviewer ri for the

file fj .

2) Comments recency (cr). The measure cr is a weight

that reflects the recency, i.e., freshness, of the review
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comments on the file f by the reviewer ri. The weight

cr is given as follow.

cr(ri,f) = 1− Tf

T
∈ [0, 1] (4)

where Tf is a count of the number of calendar days since

the most recent comment in all similar files F , and T
is a count of number of calendar days since the whole

project is created. That is, if the most similar (or same)

file is commented at the day the patch P is submitted,

then cr = 1.

Then, Exp(ri, f) is defined as follows.

Exp(ri, f) = cr(ri,f) × CF (ri, f) (5)

Finally, the expertise of a (set of) reviewer(s) Rp to be

invited/assigned for the patch P having a set of files Fp is

denoted as RE and calculated as follows:

RE(Rp, Fp) =

∑
∀ri∈Rp

E(ri, Fp)

|Rp|
(6)

where E(ri, Fp) is given by Equation 1.

Reviewer collaboration model (RevRecRC). Each reviewer

ri may have a review collaboration RC with both (i) the

review request submitter, and/or (ii) the rest of candidate re-

viewers Rp\ri based on past reviews. The review collaboration

forms a social network within the project. This network is

represented as a graph G = (V,E) where the vertices V
represent the people (code authors and reviewers) and the

edges E represent the collaboration measure between them

as a count of the number of exchanged review comments

during their past co-reviews. For a patch P , the code author

and the candidate reviewers can be represented as a weighted,

undirected sub-graph Gp = (Vp, Ep).

Formally, let Rp a candidate set of reviewers recommended

for a patch P submitted by a code author d, then, we calculate

the reviewers collaboration, RC, from the sub-graph Gp =
(Vp, Ep) based on two aspects: the sub-graph connectivity,

and the sum of weights on the edges (comments count), as

follows:

RC(d,Rp) =
|Ep|

|Vp| × (|Vp| − 1)/2
×

∑

∀epi∈Ep

epi (7)

where the coefficient
|Ep|

|Vp|×(|Vp|−1)/2 ∈ [0, 1] reflects the

sub-graph connectivity (ideally equals to 1 if the graph is

complete), and epi is the weight on the edge ei, i.e., a count

of the number of review comments between each pair of

contributors (reviewers and code authors).

To illustrate the collaboration model, let us consider the

example sketched in Figure 3, where a patch is submitted by

a developer d = Stephan, and reviewed by a set of review-

ers Rp = {Paul, Michel, David, Alex}. Then, the

reviewer collaboration score RC is calculated from the col-

laboration sub-graph as follows, RC = 9
5∗4/2 × 285 = 256.5.
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Fig. 3: Example of review collaboration sub-graph.

C. Genetic Algorithm Adaptation

In the following, we describe our SBSE model for RevRec.

To adopt a seach-based technique, a set of essential elements

should be defined including the solution representation, fitness

function, computational search algorithm, selection, genetic

operators, and termination criteria [21].

Solution representation. A solution Rp, i.e., set of peer

reviewers, for a patch P , can be represented in an array of

size equals to the total number of current reviewers working

on the project, numReviewers. Each element from this array

denotes whether a reviewer is recommended for the code

change (‘1’) or not (‘0’). For example, Figure 4 encodes a

candidate solution for the review example of the OpenStack

project #283653 sketched in Figure 1. For sake of simplicity,

we assume that OpenStack has only ten reviewers. This

solution example indicates that the 2nd, 4th, 5th, 7th, and the

10th reviewers (Paul, Michel, David, Alex, and Jack,

respectively) are recommended for this code change submitted

by Stephan.

0 1 0 1 1 0 1 0 0 1

���	�� ����� ������ � �	���� ���	
 ��	�	�� ����
� �����	�� ��������� � ����

Fig. 4: Solution representation.

Constraints. Each solution has to comply with a set of

constraints. The first constraint considered in RevRec, is that

the recommended list should contain at least one approver,

i.e., core reviewer. This constraint, could be either activated

or inactivated by the review request submitter. Moreover, our

solutions should satisfy two other constraints, the minimum

and the maximum number of recommended reviewers, min-
Rev and maxRev, respectively. The two latter constraints are

checked by simply calculating the sum of the ‘1’ elements

in the solution’s array. RevRec uses these three constraints

as configuration parameters to be set up by the developer

according to the complexity and the size of his code change.

Computational search algorithm. As a search method,

we employed a widely used metaheuristic algorithm, namely

genetic algorithm (GA) [18].

GA starts by creating an initial population of solutions. A

solution is a set of peer reviewers. In the first generation, these

solutions are generated randomly. Then in an iterative process,

every iteration produces a new generation of solutions derived

from the previous ones. For each iteration, GA pushes the

“fittest” candidates to the next generation (elitism), and then

GA generates the rest of the solutions composing the next

generation by combining/modifying existing solutions using

371



crossover and/or mutation operators. The fitness of a solution

is computed using a function implementing the heuristics

stated earlier (reviewers expertise and collaboration).

Fitness function. The fitness function quantifies the quality

of each individual in the current population. To evaluate the

fitness of each candidate solution we employed a fitness func-

tion that combines the reviewers expertise (RevRecRE) and

reviewers collaboration (RevRecRC). To calculate the fitness

of a candidate solution Rp for a patch P 〈d, Fp〉 submitted by

a code author d and consists of a set of Fp files, we use the

following function:

Fitness(Rp, P ) = α×RE(Rp, Fp) + β ×RC(d,Rp) (8)

where the functions RE(ri, Fp) and RC(d,Rp) are given by

Equations 6 and 7, respectively, and α+ β = 1.

Note that both RE and RC values are normalized in the

range [0,1] using min-max normalization based on all solutions

in the current population.

Selection. The selection process is based on fitness. So-

lutions that are evaluated with higher values (fitter) will

most likely be selected to reproduce, whereas, those with

low values will be discarded. In RevRec, we used roulette-

wheel selection [23], combined with elitism, where a number

of fittest solutions are copied without changes to the new

population, so the best solutions found will not be lost.

Roulette-wheel is a simple method of implementing fitness-

proportionate selection. It is conceptually equal to giving each

individual a slice of a circular roulette wheel equal in area to

the individual’s fitness. The wheel is spun n times, and on

each spin, the individual under wheel’s marker is selected to

be in the pool of parents for the next generation [23].

Genetic operators. We defined our genetic operators

crossover and mutation for RevRec as follows.

Crossover. We employ a single random cut-point crossover.

This operator is performed by generating a random number k
between 0 and numReviewers −1. Then, it exchanges the sub-

sequences before and after k between two parent individuals

to create two offsprings. We perform crossover with a certain

probability.

Mutation. Our mutation changes the new offspring by

flipping bits from 1 to 0 or from 0 to 1. Mutation can occur at

each bit position in the string with some probability. It aims at

preventing falling all solutions in the population into a local

optimum of solved problem.

Termination conditions. The population converges when

either 90% of the solutions in the population have the same

fitness value or the number of evaluation functions is greater

than a fixed number, maxEval. Then the best (fittest) solution

is returned by RevRec, based on its fitness value.

D. Reviewers ranking

Although our approach recommends a set of candidate

reviewers to co-review a submitted patch, each has his exper-

tise with some particular (or all) files and used to co-review

with some (or all) other peers, RevRec provides a second

component to rank all candidate reviewers in the project. Our

ranking technique is as follows. Top k solutions of the last

population obtained in the last iteration of GA are copied in

a single pool. Then, the rank of each reviewer corresponds to

his frequency count in the pool. That is, reviewers that are

recommended in many solutions are ranked first.

IV. EMPIRICAL EVALUATION

In this section, we present the results of our evaluation for

the proposed approach. The aim of this study is to investigate

the effectiveness of the RevRec approach in providing peer re-

viewers recommendation solutions. We conduct two empirical

studies to compare our approach with (1) existing state-of-

the-art approaches in peer reviewers recommendation, and (2)

existing metaheuristic search techniques.

A. Research Questions
We design our experiments to address three research ques-

tions.

RQ1. How accurate is RevRec in recommending peer

reviewers for code changes?

RQ2. What are the effects of each of the reviewers exper-
tise and collaboration on the accuracy of RevRec?

RQ3. How does GA compared to random search (RS) and

other popular search algorithms, SA and PSO?

B. Context Selection
Studied systems. We evaluate our approach on a benchmark

[24] of three well-known open-source systems, Android5,

OpenStack6, and Qt7. Android is a free software stack for

a wide range of mobile devices led by Google. OpenStack is

software platform for cloud computing, controling large pools

of compute, storage, and networking resources throughout a

datacenter. Qt is a comprehensive cross-platform framework

and development tools that is widely used for developing

application software. All collected reviews are closed, i.e.,

marked as “Merged” or “Abandoned”, and contain at least one

file. Table I summarizes the statistics of the three systems.

TABLE I: Studied systems statistics.

System Period studied #Reviews #Reviewers #Files

Android 2008-10 ∼ 2012-01 5,126 94 26,840
OpenStack 2011-07 ∼ 2012-05 6,586 82 16,953
Qt 2011-05 ∼ 2012-05 23,810 202 78,401

We selected these three systems for our evaluation because

they range from medium to large-sized open-source projects,

which have been actively developed for more than five years,

and have been extensively studied in the software review

literature [7], [13], [14], [24].

State-of-the-art techniques. To evaluate the efficiency of our

approach we compare it with available state-of-the-art tech-

niques, cHRev, REVFINDER, and ReviewBot, in order to in-

vestigate what improvements such an approach will bring. The

5https://source.android.com/
6http://www.openstack.org/
7http://qt-project.org/
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cHRev approach [14] is based on a reviewer expertise model,

generated from completed reviews, that combines a quantifica-

tion of review comments and their recency. REVFINDER [13]

is based on the past reviews of files with similar names and

paths to build an expertise model. ReviewBot [5] is based on

the modification history of source code using static analysis

tools to find experienced reviewers.

Moreover, we compare our GA-based approach with ran-

dom search (RS) [25] as a ‘sanity check’ and also with existing

search techniques including simulated annealing (SA) [26]

and particle swarm optimization (PSO) [27] for solving the

problem, as they are the most popular techniques in solving

software engineering problems [20], [22].

C. Method Analysis

We evaluate our approach on the dataset obtained from

our three studied systems as described in Table I. Due to

the stochastic nature of the used search algorithms, they may

give slightly different results in each run. To cutter with this

stochastic nature, we repeat the simulation run 31 times in

each case, and report the median value as commonly used in

metaheuristic algorithms [28].

Our evaluation process is as follows. For each system, we

take the most recent 1,000 reviews, in their chronological

order, as test reviews. For each test review Tr, we consider

its actual reviewers, that are known, as the ground truth.

Thereafter, we execute RevRec on Tr by deriving the expertise

and collaboration models from all reviews performed before Tr

was created. Similarly, cHRev, REVFINDER, and ReviewBot

are evaluated with the same process.

To answer RQ1, we used three common evaluation metrics

for recommendation systems, the precision, recall, and mean

reciprocal rank (MRR) [5], [13], [14], [29]. For each test

review Tr, of each studied system, we calculate the precision

and recall as follows.

precision@k =
TP

TP + FP
(9)

recall@k =
TP

TP + FN
(10)

where TP (True Positive) corresponds to the number of top-

k reviewers recommended by the approach and also actual

reviewers; FP (False Positive) corresponds to the number of

top-k reviewers recommended by the approach, but not actual

reviewers; FN (False Negative) corresponds to the number

of actual reviewers, that are not among the top-k reviewers

recommended by the approach.

We calculate these metrics with different k values, 1, 3,

5, 10 and auto. The auto refers to the size of the best

solution (set of reviewers) recommended by RevRec, auto ∈
[minRev,maxRev] of size n which is automatic by RevRec.

To ensure fair comparison, we select the top n reviewers for

each approach.

In addition to the precision and recall, we calculate the

Mean Reciprocal Rank (MRR) as the average of reciprocal

ranks of true positive reviewers in a recommendation list.

The reciprocal rank of a reviewers recommendation list is

the multiplicative inverse of the rank of the first true positive

reviewer. The mean reciprocal rank is the average of the

reciprocal ranks of results for a sample of recommendation list.

Given a reviewers recommendation lists R, the score MRR is

calculated as follows:

MMR =

∑
∀r∈R

rank(r)

|R| (11)

where rank(r) is the rank score of the first reviewer in the

recommendation list r. The higher is the MRR score, the better

is the recommendation approach.

To answer RQ2, we investigate the effectiveness of

each of the components of RevRec, the reviewers expertise

(RevRecRE), and the reviewers collaboration (RevRecRC). To

assess the effectiveness of RevRecRE, we set up α = 1 and

β = 0 in the fitness function (Equation 8), and inversely for

the RevRecRC component (i.e., α = 0 and β = 1). To this

end, we use our evaluation metrics precision@k, recall@k,

and MRR.

To answer RQ3, we compare the effectiveness of GA

against SA, PSO and RS in terms of precision and recall.

This evaluation is a sanity check to make sure that we used

an appropriate search algorithm. Moreover, if the proposed

formulation does not allow an intelligent search algorithm

to outperform random search, then the proposed formulation

is not appropriate. For all algorithms, we use the same for-

mulation given in Section III-B. The parameters setting and

statistical tests used are described in sections IV-D and IV-E,

respectively.

D. Parameter Setting

The initial population/solution of GA, SA, PSO, and RS

are completely random. The stopping criterion is when the

maximum number of function evaluations maxEval, set to

8,000, is reached. After several trial runs of the simulation,

the parameter values were fixed. Indeed, there are no general

rules to determine these parameters, and thus we set the

combination of parameter values by trial-and-error, a method

that is commonly used by the SBSE community [28], [30].

For replicability, we report in Table II the parameter settings

of GA, SA and PSO. For RS, we switched off the individual

selection based on fitness value in our GA adaptation.

For our experiments, the parameters minRev is set to 1,

and maxRev is set to 10. We set the parameters α and β
to 0.5 as default parameters. Note that RevRec allows the

TABLE II: Parameter settings used for GA, SA and PSO.

Algorithm Parameter Value

GA

population size 200
crossover probability 0.85
mutation probability 0.1
number of crossing points 1
selection Roulette selection

SA

initial temperature 100
final temperature 0.157
cooling coefficient 0.98
number of iterations 25

PSO
number of particles in a swarm 200
acceleration coefficient c1 2
acceleration coefficient c2 2
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TABLE III: The precision and recall results achieved by RevRec, cHRev, REVFINDER, and ReviewBot, for each system.

System precision@k recall@k

k RevRec cHRev REVFINDER ReviewBot RevRec cHRev REVFINDER ReviewBot

Android

auto 0.52 0.38 0.24 0.17 0.54 0.42 0.38 0.18
1 0.58 0.50 0.34 0.21 0.38 0.27 0.18 0.11
3 0.47 0.35 0.25 0.17 0.51 0.50 0.39 0.19
5 0.39 0.30 0.22 0.12 0.61 0.61 0.48 0.29
10 0.34 0.26 0.18 0.09 0.71 0.65 0.54 0.38

OpenStack

auto 0.54 0.41 0.26 0.19 0.56 0.40 0.31 0.22
1 0.59 0.48 0.32 0.24 0.41 0.31 0.15 0.12
3 0.51 0.42 0.27 0.20 0.54 0.39 0.29 0.20
5 0.43 0.38 0.25 0.16 0.61 0.52 0.37 0.32
10 0.36 0.31 0.21 0.11 0.74 0.66 0.46 0.39

Qt

auto 0.46 0.39 0.26 0.18 0.51 0.45 0.31 0.22
1 0.49 0.45 0.30 0.22 0.41 0.33 0.14 0.9
3 0.45 0.40 0.27 0.19 0.50 0.47 0.27 0.16
5 0.41 0.37 0.21 0.13 0.59 0.52 0.35 0.24
10 0.34 0.31 0.16 0.09 0.65 0.60 0.43 0.30

review submitter to easily set these parameters according to

his preferences.

E. Statistical Test Methods

We used the Wilcoxon signed rank test in a pairwise fashion

[31], [32] in order to detect significant performance differences

between the search algorithms GA, SA, PSO, and RS under

comparison. The Wilcoxon test does not require that the data

sets follow a normal distribution since it operates on values’

ranks instead of operating on the values themselves. We set

the confidence limit, α, at 0.01.

Moreover, we investigate the effect size using Cliff’s delta

(d) [33]. The effect size is considered: (1) negligible (N) if

| d |< 0.147, (2) small (S) if 0.147 ≤| d |< 0.33, (3) medium

(M) if 0.33 ≤| d |< 0.474, or (4) large (L) if | d |≥ 0.474.

The goal of these tests is to assess whether such compared

results are statistically better than each other, to cope with the

stochastic nature of such analyzed data [28].

V. STUDY RESULTS

This section reports the analysis of the results for the three

research questions formulated in Section IV-A.

A. RQ1: Accuracy of the proposed approach

Table III reports the precision@k and recall@k of our

approach RevRec compared to cHRev, REVFINDER, and

ReviewBot, for each studied system. The experiment shows

that RevRec achieves a precision@1 at 0.58, 0.59 and 0.49

for Android, OpenStack and Qt, respectively. Lower precision

scores are obtained with top-10 but still higher than 0.34

for all systems. For the three systems, we observe that our

approach RecRec achieved significantly superior precision

values compared to cHRev, REVFINDER and ReviewBot.

In terms of recall@k, RevRec achieved the top-10 recall

scores at 0.71, 0.74 and 0.60, for Android, OpenStack and

Qt, respectively. The lowest recall scores were at k = 1, but

still higher than 0.51 in worst case for Qt project. Clearly, the

recall results achieved by RevRec are considerably superior

than cHRev, REVFINDER and ReviewBot. We also observe

that the accuracy performance of RevRec is consistent across

the three studied systems.

Furthermore, results show that RevRec achieved signifi-

cantly superior precision and recall results when k is automatic

TABLE IV: The mean reciprocal rank (MRR) of the ap-

proaches RevRec, cHRev, REVFINDER, and ReviewBot, for

each studied system.

System RevRec cHRev REVFINDER ReviewBot

Android 0.69 0.65 0.60 0.25
OpenStack 0.63 0.58 0.55 0.30
Qt 0.54 0.43 0.31 0.22

(auto), i.e., the default set of recommended reviewers without

ranking. Indeed, this an interesting feature of the RevRec ap-

proach to recommend a set (number) of reviewers, as reviewer

assigners are unlikely to look through a long recommendation

list, and manually find reviewers combination.

Table IV reports the Mean Reciprocal Rank (MRR) reflect-

ing the overall ranking performance. As shown in the table,

RevRec achieves a MRR score of at least 0.54 for all the

benchmark systems. This indicated that our approach provides

a higher chance of recommending appropriate reviewers in the

first ranks, than cHRev, REVFINDER, and ReviewBot.

This superiority of RevRec has an actionable finding sup-

porting the claim that combining reviewers expertise and

reviewers social relationships is beneficial for accurately rec-

ommending peer reviewers.

B. RQ2: Effectiveness of each of the reviewers expertise and
collaboration

To investigate the effectiveness and the contribution of

each of the reviewers expertise and reviewers collaboration

heuristics, we assess the accuracy of each of them individually

with k = auto. Figure 5 reports the results of each individual

component RevRecRE and RevRecRC. We observe that the

RevRecRE component performs slightly better than RevRecRC

in terms of precision, recall and MRR. Clearly, both heuristics

are lower than the RevRec formulation. Interestingly, we

found that based only on social relationships (collaboration)

without reviewers expertise, we are able to recommend code

reviewers with an acceptable precision and recall score, more

than 0.31 and 0.39, respectively. Thus, based on the results

of Figure 5, we can conclude that combining both expertise

and collaboration is an appropriate formulation of the code

reviewers recommendation problem, as it improves precision,

recall and MRR.
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Fig. 5: The precision, recall and MRR results achieved by each of the RevRec, RevRecRE and RevRecRC.

An important observation to highlight from the results of

Figure 5 and Tables III and IV is the importance of social

relationships in peer code review. Results show that RevRecRE

achieves comparable results to cHRev for all studied systems,

but considerably better performance is achieved by RevRec

when the reviewers collaboration is incorporated in the search

process. This finding provides evidence that code reviewers

assignment is influenced by social relationships between code

authors and reviewers. That is, code authors are likely to be

more familiar and invite their code review collaborators more

than their non-code review collaborators.

In more details, we studied the intersection between the

recommendation lists identified by each of RevRecRE and

RevRecRC, individually in each of the three systems. We

observed that more than 68% of common reviewers are

recommended by both expertise and collaboration models.

This indicates that the peer code review process is forming

a review expertise between code review collaborators.

C. RQ3: Performance of GA

Figure 6 reports the boxpots, while Table V reports the

Wilcoxon significance tests and the Cliff ’s delta (d) effect

size test to compare each of GA, PSO, SA and RS in terms of

precision and recall. Each algorithm is executed 31 times and

the default output is reported, without reviewers ranking (for

this reason we do not consider the MRR metric). Clearly, GA,

PSO and SA significantly outperform random search (RS) in

all the three systems with a large effect size. This provides

evidence that our problem formulation is appropriate, as an

intelligent search is required to explore the search space.

From the results, we observe that GA achieves significantly

better results than SA in terms of precision and recall with

large effect size in all the cases (two metrics × three systems).

Moreover, GA achieved significantly better results than PSO

with large effect size, except in 2 out of 6 cases the effect size

was medium (the precision with Android, and the recall with

OpenStack). Furthermore, SA turns out to be remarkably lower

than both GA and PSO in all metrics and all systems. More

specifically, we observed that for smaller systems (Android

and OpenStack), the performance of SA in terms of precision

and recall is better than larger systems (Qt), as can be seen in

the boxplots of Figure 6. This results indicate that population-

based algorithms (GA and PSO) are more appropriate than
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Fig. 6: Boxplots of precision an recall results achieved by GA,

PSO, SA and RS through 31 independent runs.

local search algorithms (SA) for the reviewers recommenda-

tion problem.

Based on these results we can conjecture that GA achieves

significantly better results than SA and PSO, in all the studied

systems for the code reviewers recommendation problem.

VI. THREATS TO VALIDITY

This section discusses threats to the validity of our study.

Construct threat to validity can be related to the set of

correct reviewers, i.e., the ground truth, to calculate preci-

sion and recall. During the code review process, sometimes

reviewers are assigned to a code change but they do not

contribute to it. This may due to several reasons including

his current workload, availability or the social relationship

with the code change submitter. To mitigate this threat, we

considered the ground truth as the set of reviewers who are

assigned and contributed by at least one comment, as our

collaboration graph is based on the number of comments
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TABLE V: Statistical tests results of GA vs. PSO, SA and RS.

Precision Recall
System GA

vs p-value d p-value d

PSO <0.01 0.43 (M) <0.01 0.52 (L)
SA <0.01 0.74 (L) <0.01 0.92 (L)Android
RS <0.01 0.96 (L) <0.01 0.96 (L)

PSO <0.01 0.88 (L) <0.01 0.40 (M)
SA <0.01 0.96 (L) <0.01 0.94 (L)OpenStack
RS <0.01 0.96 (L) <0.01 0.96 (L)

PSO <0.01 0.58 (L) <0.01 0.66 (L)
SA <0.01 0.96 (L) <0.01 0.96 (L)Qt
RS <0.01 0.96 (L) <0.01 0.96 (L)

N: negligible S: small M: medium L: large

participated between two reviewers in their previous reviews.

To accurately measure the level of reviewers collaboration,

we have to consider other types of socio-technical interactions

between them, e.g., exchanged emails, collaboration in related

(sub-)projects, etc.

Internal threats to validity can be related to the stochastic

nature of the metaheuristic algorithms [20]. To mitigate this

threat, we used the Wilcoxon test and Cliff’s delta effect

size over 31 independent runs of each algorithm [28]. The

choice of the best weights, α and β, between our components,

RevRecRE and RevRecRC, can affect the the overall results.

Although we set the average (α = β = 0.5), we plan to

empirically investigate several combinations.

External threats to validity can be related to the general-

izability of our results. Although we empirically evaluated

our approach on three large size open-source systems from

different application domains, Android, OpenStack, and Qt,

we cannot claim that the same results would be achieved

with other projects or other periods of time. Moreover, our

empirical evaluation is based on open-source projects using

the Gerrit code review tool, theretofore we cannot generalize

our results on other code review tools. As future work, we plan

to extend our evaluation on other open-source and industrial

projects using different code review platforms.

VII. RELATED WORK

Related work to this study could be divided into two main

categories, (i) peer reviewers recommendation systems, and

(ii) studies on social and human aspects in peer review.

Peer code reviewers recommendation. Balachandran first

suggested to use review bot tool, as a recommendation system

to reduce human effort and improve review quality in an global

industrial setting, where face-to-face meetings are not possible

[5]. Later, Patanamon et al. [13] adapted and improved the

recommendation system to assist with the tool-based mod-

ern peer review process. The authors used the file review

history to recommend the best reviewer. Recently, Zanjani

et al. [14] proposed a reviewer recommendation approach

based on a reviewer expertise model, generated from past

reviews, that combines a quantification of review comments

and their recency. Anvik et al. [34] used machine learning

techniques to recommend developers to fix new bug reports.

Xia et al. [35] used bug report and developer information to

recommend developers to resolve bugs. However, the most

notable limitation of these works is that the socio-technical

aspect of the code review process is not considered.

Human aspects in peer code review. It is widely agreed

that code review is a complex process involving personal and

social aspects [17]. Fagan first proposed software inspection

as a vigorous and systematic peer review activity to ensure

the quality of software [36]. Due to the volunteer nature of

OSS developers and the peer review structure, studies such

as Rigby et al. [11], [37], Bosu et al. [9], [15] Baysal et

al. [12], Bird et al. [38], and Yang et al. [16] found that

different human factors and socio-technical issues influence

the OSS peer review, motivating the need for a peer review

recommendation system.

Baysal and her collegues conducted several studies to in-

vestigate non-technical and human aspects in code review.

They found that organizational, personal and participation

dimensions influence the review process [12], [39]. Moreover,

Baysal et al. found that the review process can be sensitive

due to its nature of dealing with people’s egos [40].

Bosu et al. [9] studied different aspects of peer impression

formation, and found that there is a high level of trust,

reliability, perception of expertise, and friendship between

OSS peers who have participated in code review for a period

of time. Also developers reputation is an important aspect to

receive quicker first feedback, and core developers are more

likely to have their code changes accepted into the project

codebase [41].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a new search-based approach,

namely RevRec, for peer code reviewers recommendation. Our

approach uses genetic algorithm to find the appropriate peer

reviewers to be invited/assigned to review code change based

on their expertise and their collaboration in past reviews. The

proposed approach is evaluated on a benchmark of three open

source systems. Results provide evidence that formulating

code reviewers recommendation based on a combination of

reviewers expertise and their socio-technical relationships is

more accurate and effective in practice. Moreover, statistical

analysis of the obtained results indicate that GA is more effi-

cient in solving the peer reviewers recommendation problem.

As future work, we plan to extend our approach to incor-

porate the reviewers workload in the recommendation task,

and consider the number of recommended reviewers based on

the code change size and complexity. Moreover, we plan to

investigate and integrate the commit history in our expertise

model. Another interesting research direction that interest us

is to analyze the rich information embodied in the review

comments in order to better understand the social relationships

between code authors/reviewers to improve the reviewers

recommendation accuracy.
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