
PADLA: A Dynamic Log Level Adapter
Using Online Phase Detection

Tsuyoshi Mizouchi∗, Kazumasa Shimari∗, Takashi Ishio†, Katsuro Inoue∗
∗ Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

Email: {m-tys, k-simari, inoue}@ist.osaka-u.ac.jp
† Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan

Email: ishio@is.naist.jp

Abstract—Logging is an important feature for a software
system to record its run-time information. Although detailed
logs are helpful to identify the cause of a failure in a program
execution, constantly recording detailed logs of a long-running
system is challenging because of its performance overhead and
storage cost. To solve the problem, we propose PADLA (Phase-
Aware Dynamic Log Level Adapter) that dynamically adjusts
the log level of a running system so that the system can record
irregular events such as performance anomalies in detail while
recording regular events concisely. PADLA is an extension of
Apache Log4j, one of the most popular logging framework for
Java. It employs an online phase detection algorithm to recognize
irregular events. It monitors run-time performance of a system
and learns regular execution phases of a program. If it recognizes
a performance anomalies, it automatically changes the log level
of a system to record the detailed behavior. In the case study,
PADLA successfully recorded a detailed log for performance
analysis of a server system under high load while suppressing
the amount of log data and performance overhead.

Index Terms—Dynamic Analysis, Log Level, Log4j, Phase
Detection, Performance Anomaly

I. INTRODUCTION

Logging is a common practice to record run-time informa-

tion of program execution [7]. Developers insert logging state-

ments to record run-time information such as error messages

and actual values of variables. The information is often used

in failure diagnosis [10], [11], [17], program comprehension

[15], and so on.

Logging in detail incurs system run-time overhead (e.g.

CPU consumption and I/O operations), while logging too little

may miss necessary run-time information [5]. Long-running

systems like a web service may produce a huge amount of

logs and consume a huge amount of disk space. For instance,

a service system of Microsoft can produce dozens of Terabytes

of logs per day [6]. Such a high overhead might cause adverse

effects such as service delays.

To address the trade-off, popular logging libraries such as

Apache Log4j [3] provide log levels to control the amount of

logs recorded in a storage. Developers assign a log level to

each of logging statements in a system. A logging library fil-

ters log messages by comparing the log levels with a dynamic

log level specified by a user of the program. In case of Log4j,

six log levels are available by default: fatal, error, warn,

info, debug, and trace. Those levels represent the degree

of importance of messages. The error level represents error

messages, the info level represents important but normal

event, and the trace level represents detailed information

for tracing a program execution, respectively [21].

The log levels are easy to use but ineffective to analyze

irregular behavior such as performance anomaly of long-

running systems. Such behavior infrequently occurs during

daily operations. Since the info level does not record detailed

logs, reproducing those behavior is difficult [20]. On the

other hand, logging the entire execution of a system with the

trace level is unrealistic due to the huge amount of logs and

performance overhead.

To solve the problem, we propose PADLA, an extension of

Apache Log4j, that dynamically adjusts the log level of a run-

ning system. It employs an online phase detection algorithm

that divides a program’s execution into a sequence of phases

according to their dynamic properties or traits [14]. PADLA

monitors run-time performance metrics of a system and learns

regular phases of the system. It recognizes a performance

anomaly as an unknown phase. It automatically changes the

log level of the running system to record detailed logs for

the irregular events while suppressing the amount of logs for

regular events.

To evaluate PADLA, we have conducted a case study using

a web application running on Tomcat and a load testing tool.

As a result, PADLA successfully recorded the information

necessary for performance analysis from the server system

under high load with a small performance overhead compared

with the trace level logging.

In the remainder of the paper, Section II explains the detail

of the tool. Section III shows our case study that demonstrates

the effectiveness of the tool. Section IV describes related work.

Section V describes the conclusion and future work.

The PADLA tool is publicly available on GitHub: https:

//github.com/244-penguin/PADLA.

II. PADLA LOG LEVEL ADAPTER

PADLA is an extension of Apache Log4j that dynamically

adjusts the output log level of a running system according to

the run-time behavior of a system. The tool keeps the logging

interface of Log4j. Developers can activate the tool by adding

PADLA to their log4j.xml file and arguments for a program

execution. It does not need to modify the source code of a

target system.

135

2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)

978-1-7281-1519-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICPC.2019.00029

Target system

Performance
Reporter

PADLA

Phase
Detection

Output

Performance
information

Known
or

Unknown
Trace Level

(Unknown Phases)

Original Level
(Known Phases)

Logging

Logging Method Calls

Fig. 1. An overview of PADLA

The tool takes as input a log level for recording regular be-

havior, e.g. info level. The tool also takes execution scenarios

for learning regular behavior. If unavailable, the tool learns

regular behavior on the fly. The tool produces application

logs in the same format as Log4j using the specified level

for regular events and the trace level for irregular events,

respectively.
The tool comprises two components: Phase Detection and

Logging. Figure 1 shows an overview of these components.

The phase detection component monitors a program execution

and divides it into a sequence of phases according to their

performance characteristics. It classifies each phase as either

known or unknown. The logging component buffers recent log

messages and filters them using the original level specified by

a user for regular phases and the trace level for unknown

phases, respectively. The following subsections explain each

of components in detail.

A. Phase Detection
PADLA employs an online phase detection method pro-

posed by Reiss [14]. The method firstly divides a program

execution to fixed time intervals. It then translates the t-th
interval into a performance vector vt. Two intervals belong to

the same phase if the cosine similarity of their vectors vs and

vt is greater than a threshold. Otherwise, the intervals belong

to different phases.
We employ a performance vector used in an existing

performance profiling tool [12]. Each element in a vector

represents the actual execution time consumed by a corre-

sponding method in the interval. To observe performance

vectors, PADLA uses dynamic byte-code instrumentation to

inject a performance reporter to a target application. The

injected code reports the time spent for each executed method.

PADLA obtains a performance vector every 0.5 seconds.
PADLA maintains a set of known vectors Vk to classify

an interval as either known or unknown. The t-th interval is

classified as a known phase if there exists a vector v ∈ Vk that

is similar to vt. The interval is classified as an unknown phase

if no vector in Vk is similar to vt. The classification result is

passed to the logging component that dynamically adjusts the

log level of the running program.
To construct the initial Vk for a program, PADLA requires

executions of the program that cover regular behavior. If those

scenarios are available, Vk is a set of performance vectors

observed in the executions. If unavailable, PADLA starts with

Vk = φ.
The component updates Vk to learn unknown phases as

regular behavior if they repeatedly occur during an execution.

The learning is necessary because an unknown phase may

continue for a long time due to various reasons. For example,

a permanent change of a run-time environment may affect the

performance of a system. The log level change of PADLA

also may affect performance characteristics. If the component

records detailed logs of repeated occurrences of an unknown

phase, the amount of log data and performance overhead will

be huge. So it records detailed logs of only the first few

intervals of a long-duration phase for analysis. In the current

implementation, we add a vector vt to Vk if two consecutive

time intervals (i.e. one second) belong to the same unknown

phase. In other words, the unknown phase is likely a new

regular behavior for the system.

B. Logging
The logging component writes log messages to a storage

according to the classification of the latest phase. Since an

unknown phase is recognized after its occurrence, the com-

ponent internally buffers recent N log messages (N = 300
in our current implementation) on memory using the trace
level. During known phases, the logging component filters the

detailed messages out but delays the output of messages. If

an unknown phase is detected, all the buffered log messages

are written to log files, and then the component starts to

record logs using the trace level. The buffered messages

provide detailed behavior of a few intervals before the detected

unknown phase. They enable developers to investigate what

actually happened in an unknown phase.
It should be noted that the overhead of the buffering is

small because an application using Apache Log4j always

136

produces log messages irrelevant to a run-time log level. An

existing logger in Log4j filters the generated log messages for

each logging method call. Our logging component delays the

filtering step until a phase classification.

III. CASE STUDY

To demonstrate the usefulness of PADLA, we conduct a case

study that records the behavior of a web application under a

load test. We analyze (1) the run-time cost of the tool in terms

of the size of log files and performance overhead, and (2)

usefulness of the log contents to understand irregular behavior

under high load.

A. Target Application

We execute JPetStore 6 [1], an online shop demo applica-

tion, on Apache Tomcat 8.5.34 [4]. To enable PADLA to learn

regular behavior of the system, we firstly conduct a load test

with a low load configuration. We then conduct a load test

with a high load configuration as an irregular event of the

system.

A load test starts the server, waits for 30 seconds, and then

starts a number of threads to access the pages on the system.

The low load configuration uses 100 threads that each access

to the system 10,000 times. The high load configuration uses

10,000 threads. Each of them also access to the system 10,000

times. All the threads follow the same access pattern. The load

test is conducted with Apache JMeter 5.0 [2] and Windows

10 Pro running on Xeon E5-1650v3 processor, 32 GB RAM,

and a SSD.

We measure the baseline of an execution using Log4j with

the info level. We use Log4j with the trace level to

measure the cost of detailed logs. We compare the performance

with PADLA using the info level for regular events. We

measure the log file size and time three times for each

configuration and compute the average cost of the tool.

B. Result

PADLA successfully changed the log level of the system.

Figure 2 shows an excerpt of the produced logs. Log messages

on the debug and trace levels appeared from 30 seconds

after the Tomcat started. The time corresponds to the load

test with the high load configuration. Since the high load test

continues for a while, PADLA automatically learns the high

load condition as a known phase, i.e. a new regular behavior.

PADLA changes the log level of the system to the original

info level after recording detailed logs for 10.6 seconds

on average. After the change, no more unknown phases are

recognized by PADLA until the end of a load test.

Table I shows the size of log files and the time for each

configuration. Compared with the baseline of the info level,

logging with the trace level increased the file size by 1,431

MB and the execution time by 74%. On the other hand,

PADLA increased the file size only 34.1 MB and the execution

time by 30%. The result shows that the tool can suppress the

size of log files and performance overhead.

Fig. 2. Output Log file

TABLE I
PERFORMANCE OF PADLA

Output Log Level Log File Size Execution Time
Log4j info (Fixed) 11.9 MB 1 min 14 sec
Log4j trace (Fixed) 1,442.9 MB 2 min 9 sec
PADLA (Dynamic) 46.0 MB 1 min 36 sec

We also investigated the contents of logs in the log file

produced by PADLA. Listing 1 shows example log messages

that are likely useful to understand the behavior of the sys-

tem under high load. The first line of Listing 1 shows that

the actions/Catalog.action page was accessed. The

second line shows that the viewCategory() method was

called when the viewCategory event occurred. Those lines

indicate page names and method calls that were accessed

during the irregular period. They also indicate the number

of accesses for a certain period of time. These information

are helpful for performance analysis such as examining the

performance limit of the system.

IV. RELATED WORK

The original Apache Log4j provides two ways to dynami-

cally change the log level of a running system. The first one

is API (e.g. Logger.setLevel method). Using the API,

developers can program their system to dynamically choose

a log level. However, it may prevent users from choosing an

appropriate log level for their environment. The other one is

a configuration file. Log4j has an automatic reconfiguration

option to update its configuration every time interval (e.g. five

seconds) during run-time. The update interval is too slow to

record detailed logs for irregular behavior.

Liu et al. proposed a lightweight dynamic analysis frame-

work named DOUBLETAKE to find buffer overflows, memory

use-after-free errors, and memory leaks [9]. This framework

monitors memory in a lightweight manner during a normal

execution and records precise information related to memory

errors when abnormal behavior occurs. The tool requires two

program executions, while PADLA aims to record detailed

logs in a single execution.

Ogami et al. proposed a three-dimensional cities visual-

ization to show performance in real-time [12]. It visualizes

the execution time for each method so that developers can

recognize irregular behavior of a system. PADLA adopts the

137

Listing 1. Example log messages of JPetStore

1 15:03:46 [http-nio-8080-exec-108] TRACE net.
sourceforge.stripes.controller.
StripesFilter - Intercepting request to
URL: /actions/Catalog.action

2 15:03:46 [http-nio-8080-exec-132] DEBUG net.
sourceforge.stripes.controller.
DispatcherHelper - Resolved event:
viewCategory; will invoke:
CatalogActionBean.viewCategory()

time information as a performance vector for phase detection

and automatically adjusts the log level of a running system to

record further details of irregular behavior.

Yao et al. proposed an adaptive logging approach for

database systems [18], [19]. The approach combines two

types of log messages to optimize the I/O cost of transaction

logs while keeping the cost of data recovery from a failure.

Although our method also uses two levels of log messages

to reduce the I/O cost, our method focuses on debugging and

failure diagnosis activities.

PADLA is dependent on appropriate log messages produced

by a program. To enable developers to write a log statement

properly, Yuan et al. proposed a method to detect inappropriate

log levels based on source code version history [21]. Li

et al. proposed an automated approach to help developers

to determine the most appropriate log level when adding a

logging statement [8]. Yuan et al. also proposed a tool named

LogEnhancer that modifies each log statement to collect

additional information (e.g. actual values of variables) to ease

failure diagnosis [22].

PADLA is also dependent on a phase detection algorithm.

PADLA cannot recognize irregular events if they do not affect

performance vectors. Although existing behavior-based phase

detection techniques [13], [16] are promising to detect other

kinds of irregular events, they are defined as offline analysis

performed after a program execution. Investigating an online

phase detection algorithm for recognizing various irregular

events is our future work.

V. CONCLUSION

This paper presents PADLA, a tool for adapting the log level

of a running system dynamically. Using the phase detection

algorithm, PADLA monitors behavior of the system and adjust

the log level that is appropriate for the situation. In the

case study, PADLA successfully recorded a detailed log for

performance analysis of a server system under high load while

suppressing the amount of log data and performance overhead.

PADLA has two parameters: the length of a time interval

and the size of a buffer. In future work, we are planning to in-

vestigate effective parameter configuration. We also would like

to investigate online phase detection techniques to effectively

recognize various kinds of irregular events.

ACKNOWLEDGMENTS

This work has been supported by JSPS KAKENHI Nos.

JP18H03221 and JP18H04094.

REFERENCES

[1] “Jpetstore demo 6,” http://www.mybatis.org/jpetstore-6/.
[2] Apache Software Foundation, “Apache jmeter,” https://jmeter.apache.

org/.
[3] ——, “Apache log4j 2,” http://logging.apache.org/log4j.
[4] ——, “Apache tomcat,” http://tomcat.apache.org/.
[5] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,

“Where do developers log? an empirical study on logging practices in
industry,” in Companion Proceedings of the 36th International Confer-
ence on Software Engineering, 2014, pp. 24–33.

[6] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 60–70.

[7] S. Kabinna, W. Shang, C. Bezemer, and A. E. Hassan, “Examining
the stability of logging statements,” in Proceedings of the 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering, 2016, pp. 326–337.

[8] H. Li, W. Shang, and A. E. Hassan, “Which log level should developers
choose for a new logging statement?” Empirical Software Engineering,
vol. 22, no. 4, pp. 1684–1716, 2017.

[9] T. Liu, C. Curtsinger, and E. D. Berger, “Doubletake: Fast and precise
error detection via evidence-based dynamic analysis,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp.
911–922.

[10] J. Lou, Q. Fu, J. Li, and Y. Wang, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in Proceedings
of the 2009 Ninth IEEE International Conference on Data Mining, 2009,
pp. 149–158.

[11] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from
console logs for system problem detection,” in Proceedings of the 2010
USENIX Conference on USENIX Annual Technical Conference, 2010,
pp. 24–24.

[12] K. Ogami, R. G. Kula, H. Hata, T. Ishio, and K. Matsumoto, “Using
high-rising cities to visualize performance in real-time,” in Proceedings
of the 2017 IEEE Working Conference on Software Visualization, 2017,
pp. 33–42.

[13] H. Pirzadeh, A. Hamou-Lhadj, and M. Shah, “Exploiting text mining
techniques in the analysis of execution traces,” in Proceedings of the
2011 27th IEEE International Conference on Software Maintenance,
2011, pp. 223–232.

[14] S. P. Reiss, “Dynamic detection and visualization of software phases,” in
Proceedings of the Third International Workshop on Dynamic Analysis,
2005, pp. 1–6.

[15] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W. Godfrey,
M. Nasser, and P. Flora, “An exploratory study of the evolution of com-
municated information about the execution of large software systems,”
Journal of Software: Evolution and Process, vol. 26, no. 1, pp. 3–26,
2014.

[16] Y. Watanabe, T. Ishio, and K. Inoue, “Feature-level phase detection
for execution trace using object cache,” in Proceedings of the 2008
International Workshop on Dynamic Analysis held in conjunction with
the ACM SIGSOFT International Symposium on Software Testing and
Analysis.

[17] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
2009, pp. 117–132.

[18] C. Yao, D. Agrawal, G. Chen, B. C. Ooi, and S. Wu, “Adaptive logging
for distributed in-memory databases,” CoRR, vol. abs/1503.03653, 2015.

[19] ——, “Adaptive logging: Optimizing logging and recovery costs in dis-
tributed in-memory databases,” in Proceedings of the 2016 International
Conference on Management of Data, 2016, pp. 1119–1134.

[20] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “Sherlog:
Error diagnosis by connecting clues from run-time logs,” SIGARCH
Computer Architecture News, vol. 38, no. 1, pp. 143–154, 2010.

[21] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in Proceedings of the 34th International
Conference on Software Engineering, 2012, pp. 102–112.

[22] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software
diagnosability via log enhancement,” SIGARCH Computer Architecture
News, vol. 39, no. 1, pp. 3–14, 2011.

138

