
VOL. E104-D NO. 2
FEBRUARY 2021

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



254
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.2 FEBRUARY 2021

PAPER

An Exploratory Study of Copyright Inconsistency in the Linux
Kernel

Shi QIU†a), Daniel M. GERMAN††b), Nonmembers, and Katsuro INOUE†c), Fellow

SUMMARY Software copyright claims an exclusive right for the soft-
ware copyright owner to determine whether and under what conditions oth-
ers can modify, reuse, or redistribute this software. For Free and Open
Source Software (FOSS), it is very important to identify the copyright
owner who can control those activities with license compliance. Copy-
right notice is a few sentences mostly placed in the header part of a source
file as a comment or in a license document in a FOSS project, and it is an
important clue to establish the ownership of a FOSS project. Repositories
of FOSS projects contain rich and varied information on the development
including the source code contributors who are also an important clue to
establish the ownership. In this paper, as a first step of understanding copy-
right owner, we will explore the situation of the software copyright in the
Linux kernel, a typical example of FOSS, by analyzing and comparing two
kinds of datasets, copyright notices in source files and source code con-
tributors in the software repositories. The discrepancy between two kinds
of analysis results is defined as copyright inconsistency. The analysis re-
sult has indicated that copyright inconsistencies are prevalent in the Linux
kernel. We have also found that code reuse, affiliation change, refactoring,
support function, and others’ contributions potentially have impacts on the
occurrence of the copyright inconsistencies in the Linux kernel. This study
exposes the difficulty in managing software copyright in FOSS, highlight-
ing the usefulness of future work to address software copyright problems.
key words: software maintenance, mining software repositories, open
source software, software copyright

1. Introduction

Software copyright grants the copyright owner a legal right
to determine under what conditions this software can be
redistributed, reused, and modified with the help of soft-
ware licenses. Different from proprietary software, FOSS
projects are developed in a collaborative manner, receiving
contributions from a large number of people, named con-
tributors, from different countries or regions, or different or-
ganizations. For example, the Linux kernel is contributed by
21,074 different contributors at the end of 2019, and those
contributors have the potential to claim the copyright of the
contributed software [1]. In this paper, we name the individ-
uals or organizations explicitly declared in copyright notices
as the holders, and the individuals or organizations who ac-

Manuscript received May 13, 2020.
Manuscript revised September 30, 2020.
Manuscript publicized November 17, 2020.
†The author is with the Graduate School of Information Sci-

ence and Technology, Osaka University, Suita-shi, 565–0871
Japan.
††The author is with the Department of Computer Science, Uni-

versity of Victoria, Victoria, BC V8P 5C2, Canada.
a) E-mail: qiujitsu@ist.osaka-u.ac.jp
b) E-mail: dmg@uvic.ca
c) E-mail: inoue@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.2020EDP7107

tually own the copyrights as the copyright owners.
In general, the holders are seen as the copyright own-

ers. However, the holders may not cover all contributors
who could potentially become the copyright owners. So
identifying the copyright owners of FOSS only by the hold-
ers is insufficient. Therefore, an important question in the
copyright ownership problem of FOSS is: “Who are the ac-
tual copyright owners?” Identifying the copyright owner of
FOSS is important for several reasons: a) only the copyright
owner of FOSS is allowed to change its license or grant-
ing a commercial one to a third party, such as Oracle grants
commercial licenses to MySQL∗ [2]; b) only the copyright
owner of FOSS is allowed to start legal proceedings to en-
force its license; c) several FOSS licenses (e.g. the BSD
family of licenses) require that the copyright owner of FOSS
projects being reused be acknowledged in the documenta-
tion and other materials of the system that reuses it.

In recent years, some developers who once contributed
to large FOSS projects have enforced the open source li-
cense against the distributors who use the FOSS. These
charges are based on the terms of the highly restrictive open
source licenses. These distributors may face lawsuits and
potential monetary penalties if they ignore or violate the
terms of these restrictive licenses. For example, Patrick
McHardy - a developer of the Linux kernel - has sued some
companies, claiming that he shares a great part of the au-
thorship of the Linux kernel [3], [4]. While it is easy to
find his copyright notice existing in some source files, it is
not easy to identify what portions of his contributions still
remain in the current kernel. In other words, his declara-
tion of the copyright notice may be inconsistent with his re-
mained contributions. Therefore, the question arises: “Are
these developers enforcing the open source license against
the distributors the actual copyright owners of redistributed
FOSS projects?” To address this problem, both the open
source community and the industry invested a great amount
of effort. For example, an open source license compliance
software system and toolkit called FOSSology∗∗ have been
developed to detect the copyright notice buried in the source
code [5]. BlackDuck∗∗∗ also provides a service of assessing
the legal risks of software copyright to those who want to
commercially reuse FOSS.

However, establishing copyright ownership in large

∗https://www.mysql.com/
∗∗https://www.fossology.org/
∗∗∗https://www.blackducksoftware.com/

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers



QIU et al.: AN EXPLORATORY STUDY OF COPYRIGHT INCONSISTENCY IN THE LINUX KERNEL
255

FOSS projects and verifying whether the statement of a
copyright notice is correct are complicated. On one hand, as
we mentioned below, the contributors, who could potentially
become the copyright owners as well, can not be totally cov-
ered by the holders. On another hand, since the large FOSS
projects are usually co-developed by a large number of de-
velopers during a long period, the copyright notices poten-
tially risk the poor management and can not refer to the ac-
tual copyright ownership. For example, a copyright notice
can be added when a contributor contributes source code to
a FOSS project, but if the contributed source code is totally
deleted from this FOSS project, the added copyright notice
is possibly left in the source file since the developer who did
this deletion may not know which part of source code is gov-
erned by this copyright notice. In these cases, the copyright
notices will denote copyright ownership incorrectly. The in-
consistency between the holders in the copyright notices and
the contributors of the source code (called copyright incon-
sistency or simply inconsistency) plays an important role in
the difficulty of establishing copyright ownership in large
FOSS projects.

In this paper, as a first step of understanding copy-
right ownership, we analyze copyright inconsistencies of the
Linux kernel, which is a typical example of FOSS. To the
best of our knowledge, no work has been done to go deep
into copyright inconsistency. Only a few works analyzed the
relationship between the contributors and the holders [6],
which are insufficient to reveal some important problems
about this issue such as how prevalent copyright inconsis-
tencies are in FOSS and why copyright inconsistencies oc-
cur. Also, we want to know whether the statements of copy-
right notices are accurate and truly denote the contributors’
contributions to the source files that contain them.

To achieve our goal, we must first identify the holders
and contributors. The holders in copyright notices can be
detected from the copyright notices directly. While identi-
fying the contributors is much more difficult since tracking
the “original” authors of the source code is a difficult task in
software engineering as well. Here we use the committers
who can be tracked in software repositories as an indicator
of the contributors. The difference between committer and
contributor is that committer is the developer who commits
the source code while the contributor is the developer who
actually writes the source code. Both of them could be the
potential copyright owner who actually owns the copyrights.
Although the committers are not always consistent with the
contributors, they are the only explicit information we can
observe in software repositories directly. We will explore
the cases that a developer commits source code written by
others in our empirical study. Using the committer can help
us to conduct a quantitative analysis to study the copyright
inconsistency because the holders and contributors are two
most explicit pieces of information we can rely on to estab-
lish the ownership of the source file.

Table 1 summarizes all the roles introduced in this pa-
per.

Based on these questions, we first define and catego-

Table 1 Summary of the roles introduced in this paper.

Role Definition
Copyright owner Who actually owns the copyrights.
Holder Who is explicitly declared in copyright notices.
Contributor Who actually writes the source code.
Committer Who commits the source code to repositories.

rize the copyright inconsistency formally. We then conduct
an empirical study to study copyright inconsistency. Our
research questions are set as follows:

RQ1: How prevalent are copyright inconsistencies?
RQ2: What caused the copyright inconsistencies?
The contributions of this paper are as follows:
1. We have made the first study to focus on the preva-

lence of copyright inconsistencies, relying a proposed anal-
ysis method to detect and study them.

2. We have also conducted an empirical study on the
Linux kernel to find the reasons.

This paper is organized as follows. Section 2 first
provides a brief background on copyright notices in FOSS
projects, after which Sect. 3 proposes the definition of copy-
right inconsistency. Our empirical study on the Linux kernel
is described in Sect. 4, followed by Sect. 5 with a discussion
of the results. Section 6 describes threats to validity. After a
description of related work in Sect. 7, Sect. 8 concludes this
paper.

2. Background

In this section, we have a look at the practical situation of
copyright notices and committers in the FOSS project.

2.1 Copyright Notices in FOSS Projects

A copyright notice is a sentence to declare the holders ex-
plicitly. Generally, a copyright notice begins with the word
“Copyright” or a copyright sign “(C)”, followed by the
names of the holders. The valid year of this copyright notice
is usually stated in the copyright notice as well. An example
of the copyright notice in FOSS is as follows:

#

# Copyright (C) 2011-2013 Free Software

# Foundation, Inc.

#

# This program is free software; you can

# redistribute it and/or modify it under the

# terms of the GNU General Public License as

# published by the free Software Foundation;

# either version 2, or (at your option)

# any later version.

#

This copyright notice declares that the Free Software
Foundation owns the copyright of this software. A FOSS
license is stated with the copyright notice as well.

Usually, these holders are seen as owning the copy-
right. Note that in this paper, holders refer to the individu-



256
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.2 FEBRUARY 2021

als or organizations explicitly declared in copyright notices.
While copyright owners refer to the individuals or organi-
zations who did own the copyrights. The holders may not
always be consistent with the copyright owners.

Similar to other types of properties, copyright can be
sold and transferred. Different FOSS projects have differ-
ent rules on copyright transfer. Some FOSS projects require
their developers to transfer the copyright of their contribu-
tions. For example, Oracle - the copyright owner of MySQL
- requires all contributors to transfer the copyright of their
contributions when they make the contributions [7]. This
strict requirement ensures Oracle to be the only copyright
owner. Therefore, “ c© 2019, Oracle Corporation and/or its
affiliates” is the only copyright notice of MySQL, declaring
that the holder, also the copyright owner, is Oracle Corpo-
ration and/or its affiliates. By having this only ownership of
MySQL, Oracle is also able to offer commercial licenses.

However, most FOSS projects do not force the copy-
right transfer. They receive contributions from a large num-
ber of contributors, which makes establishing the ownership
of FOSS more complicated. Therefore, a FOSS project may
be copyrighted under from one to hundreds of copyright no-
tices.An example is the Linux kernel where a lot of copy-
right notices can be observed. Meanwhile, these copyright
notices are usually declared using some particular pattern.
The situations of many other FOSS projects are similar to
the Linux kernel.

2.2 Source Code Committers in FOSS Projects

Modern software development is usually participated by a
lot of developers. The large FOSS projects are also devel-
oped in a collaborative manner, receiving commits from a
large number of committers. For example, in the case of
the Linux kernel, the Linux foundation - the organization
dedicated to maintaining the Linux and other related FOSS
projects communities - reported that over 15,600 develop-
ers from more than 1,400 companies have contributed to the
Linux kernel since tracking began 11 years ago [8]. Version
control systems such as git†, usually have a feature known
as “blame”, to track who nominally commits certain lines of
code to the repositories. To track the contribution at a more
granular level of code tokens, a tool named cregit is devel-
oped to track the committer, time, and commit log of each
token in source file [9].

In our following study, we rely on cregit to construct
the dataset. Table 2 shows an example of the extracted infor-
mation using cregit to a source file named generic.h in the
Linux kernel. It is easy to know the list of the committers,
and the proportion of the contribution of each committer.
For example, Arnd Bergmann contributed 170 tokens to the
source file, accounting for 80.6% of all tokens, and commit-
ted thrice, accounting for 27.3% of all commits.

†https://git-scm.com/

Table 2 Result of using cregit on generic.h.

Person #Token T.Prop #Commit C.Prop

Arnd Bergmann 170 80.6% 3 27.3%
Viresh Kumar 29 13.6% 4 36.3%
Russell King 5 2.4% 1 9.1%
Robin Holt 5 2.4% 1 9.1%
Shiraz Hashim 1 0.5% 1 9.1%
Masahiro Yamada 1 0.5% 1 9.1%
Total 211 100.0% 11 100.0%

3. Copyright Inconsistency

In this section, we make a precise definition of copyright
inconsistencies and categorize them.

3.1 Definition

For the purpose of this research, copyright inconsistency
refers to the inconsistency between the holders and the com-
mitter. The holders refer to the individuals or organizations
explicitly declared in copyright notices according to our def-
inition. The committers refer to the individuals who com-
mitted the source code to repositories.

3.2 Categorization

In many FOSS projects, copyright inconsistencies can be
observed easily. Here we still take the source file generic.h
in Linux kernel, as the target source file to observe. The
header comments of this source file are as follows:

/*

* spear machine family generic header file

*

* Copyright (C) 2009-2012

* ST Microelectronics

* Rajeev Kumar <rajeev-dlh.kumar@st.com>

* Viresh Kumar <vireshk@kernel.org>

*

* This file is licensed under the terms of

* the GNU General Public License version 2.

* This program is licensed "as is" without

* any warranty of any kind, whether express

* or implied.

*/

It is easy to know that the holders are ST Microelec-
tronics, Rajeev Kumar, and Viresh Kumar. Note that pos-
sibly Rajeev Kumar is an employee of ST Microelectronics
according to the domain of his email address. We then ex-
tract the committers relying on cregit. The committers
and the proportion of their contributions to the source files
are shown in Table 2.

We can observe that inconsistencies happened in two
ways.

Firstly, we can not find any hints about the ST Micro-
electronics and Rajeev Kumar - both seen as the holders-



QIU et al.: AN EXPLORATORY STUDY OF COPYRIGHT INCONSISTENCY IN THE LINUX KERNEL
257

in the committers. Their actual contributions to this source
files are not clear. It may be a possible reason that their
copyright notices are wrongly declared or just out of date.

Secondly, a lot of committers- Arnd Bergmann, Rus-
sell King, Robin Holt, Shiraz Hashim, and Masahiro Ya-
mada - did not declare their copyright notices in the source
file. This resulted in a problem that the ownership of this
source file can not be established since we have no knowl-
edge about the contributions of the committers to this source
file. Especially, the copyright notice of Arnd Bergmann,
who committed more than 80% source code to the source
file by tokens, is not declared in the source as well. Estab-
lishing the ownership of a source file without regarding a
committer who committed a large part of source code such
as Arnd Bergmann is not wise.

So establishing the ownership of a source file only by
the copyright notices is not sufficient. Some may argue that
the committer such as Shiraz Hashim or Masahiro Yamada
committed too few source codes. Therefore, the proportion
of their commits can not support them to become the qual-
ified committers and declare their ownership of this source
file. We will have a discussion on this proportion in our em-
pirical study in Sect. 4. These two types of inconsistencies
between the holders and the committers can be observed in
many other observed source files as well.

Based on the observation of Linux kernel, we observed
two types of copyright inconsistency. One is the situa-
tion that the holder is not the committer (i.e. holder-not-
committer inconsistency). Another one is the situation that
the committer is not the holder (i.e. committer-not-holder
inconsistency).

Note that if the organizations the committer belongs to
are declared in the copyright notices, we determine there is
no inconsistency in this situation. A quantitative and ex-
ecutable analysis of the copyright inconsistency could be
conducted based on the proposed definition and categoriza-
tion.

4. Empirical Study

The goal of this section is to introduce our analysis methods
to answer research questions. To achieve this goal, we select
the Linux kernel - the most popular and successful open-
source operating system kernel - to analyze. Table 3 shows
a summary of the target version of the Linux kernel.

4.1 Research Questions

This empirical study aims at addressing the following re-
search questions:

RQ1: How prevalent are copyright inconsistencies?
This research question investigates the prevalence of copy-
right inconsistencies in the Linux kernel. Copyright incon-
sistencies will be detected using the proposed method, fol-
lowed by quantitative analysis.

RQ2: What caused the copyright inconsistencies? This
research question aims at finding the reasons causing the

Table 3 Summary of the target version of the Linux kernel.

Version 4.14
Date Nov 13, 2017
#File 45,477

copyright inconsistencies in the Linux kernel. The results
reveal the reasons by a qualitative analysis manually track-
ing the historical commit logs of the source files.

4.2 Dataset Construction

To achieve our goal, we first construct the datasets for our
empirical study. The dataset construction is consists of three
steps - sampling, building the committer dataset, and build-
ing the holder dataset.

4.2.1 Sampling

We first download the source code of the Linux kernel from
Github†. Notice that we only collect the source files whose
life cycle can be entirely traced in Github. Some source files
- known as pre-git files - have been created and evolved be-
fore the source code was uploaded to Github. Those pre-git
files are not our target source files. This step makes copy-
right notices trackable, which helps us in answering the re-
search questions. We end up with 38,932 source files af-
ter removing pre-git files from the total downloaded source
files. We aim to construct a sample dataset by randomly se-
lecting source files from these 38,932 source files. We use
a statistical method to determine the sample size needed in
order to get results that reflect the target population as pre-
cisely as needed. The required sample size was calculated so
that our conclusions would generalize to all 45,477 source
files with a confidence level of 95% and a confidence inter-
val of 5††. The calculation of statistically significant sam-
ple sizes based on population size, confidence interval, and
confidence level is well established. The calculated required
sample size is 381. At last, we randomly select 500 source
files from 38,932 non pre-git files to construct the sample
dataset.

Among these 500 source files, a part of source files’
histories can not be tracked because of the mechanism of
git. Git keeps track of changes to files in the working direc-
tory of a repository by their names. When a file is moved
or renamed, git sees it as a creation of a new file while the
original file is deleted. Since our analysis required the trace-
ability of the entire history of a source file, we only select
the source files which are not moved or renamed before. By
removing source files once moved or renamed, we end up
with a sample dataset consist of 414 source files. This num-
ber is still larger than 381 - the minimum required number
of statistically significant sample size.

†https://github.com/torvalds/linux
††https://www.surveysystem.com/sscalc.htm



258
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.2 FEBRUARY 2021

4.2.2 Building the Committer Dataset

In this step, we build the committer dataset. For each source
file in the sample dataset, we extract the full name, num-
ber of tokens they contributed, and the proportion of this
contribution for each committer using cregit. Note that a
committer may have multiple different accounts in GitHub.
We rely on cregit to solve this problem. cregit extracts
the committer’s full name and use it as the unified identifier
to merge the multiple different accounts owned by the same
committer. We then extract the e-mail address of each com-
mitter by tracking the historical commit logs of the source
file.

Lastly, we identify the organizations the committers
belong to by checking the domain of their e-mail addresses.
We use a semi-automatic method to achieve this goal. A
domain dictionary is built to map the domain of the e-mail
addresses to the organizations. When we try to identify the
organization of a committer, we first check if the domain of
his or her e-mail address is in the domain dictionary or not.
If so, we determine the corresponding organization as the
organization the committer belongs to. Otherwise, we man-
ually check this domain and identify the organization for
this committer. The pair of the domain and the organization
is added into the domain dictionary at the same time. Note
that here an organization is indicated by a uniform identifier.

In this way, we build the committer dataset. All source
files are contained in this dataset. For each of them, we list
his or her full name, the number of tokens he or she con-
tributed, the proportion of the contribution, e-mail address,
and the organization he or she belongs to. During this pro-
cess, we successfully build a domain dictionary as well.

4.2.3 Building the Holder Dataset

In this step, we build the holder dataset for each source file
in the sample dataset. Note that we have built the committer
dataset containing the full names of all committers and the
uniform identifiers to indicate the organizations they belong
to. We first use FOSSology [5] to detect the copyright no-
tices, after which we manually check all detected copyright
notices to remove the wrongly detected ones.

Then next, we build an organization dictionary shown
in Table 4. The index is the uniform identifiers of the or-
ganizations. Each of the uniform identifiers refer to a list
of possible organization names found in the analysis. The
organization names are the different ways one organization
might be referred to in copyright notices. In the beginning,
the list only contains one name that we find in building the
committer dataset.

We then match the full name of each committer to
each detected copyright notice. We achieve this by checking
whether the full name is included in the detected copyright
notice or not. Note that this check is not case-sensitive. If we
find the full name of one committer in the detected copyright
notice, we determine it as the holder of this copyright no-

Table 4 A part of the built organization dictionary.

Index List

ibm IBM Corporation
IBM Corp.
International Business Machines Corp.

amd Advanced Micro Devices, Inc
AMD, Inc

ti Texas Instruments, Inc.
TI, Inc

tice. At the same time, the type of this holder is determined
as individual. For the remaining copyright notices, we try to
match them to the organization names in all lists in the or-
ganization dictionary. If an organization name is matched,
we determine the index - the uniform identifier refers to the
list containing this organization name - as the holder. At the
same time, the type of this holder is determined as organi-
zation.

After these two matches, we try to manually identify
the holders and their types for the remaining copyright no-
tices. If the manually identified organization name has got
a uniform identifier in the organization dictionary, we deter-
mine this uniform identifier as the holder. Meanwhile, we
add this manually identified organization name into the list
that the uniform identifier refers to. If the manually iden-
tified organization name has not got a uniform identifier in
the organization dictionary, we create a new uniform iden-
tifier as the index and add this manually identified organi-
zation name into the list the newly created uniform identi-
fier refers to. Finally, we build a holder dataset, for each
source file in which the holders and the information about
their related copyright notices and their types (individual or
organization) are summarized.

During this process, we successfully build an organiza-
tion dictionary at the same time. Table 4 shows a part of the
built organization dictionary constructed during the analysis
of the Linux kernel.

4.3 Analysis Method

To answer RQ1, we detect the copyright inconsistencies
based on the built committer dataset and holder dataset.
Based on the definitions in Sect. 3.1, we detect two types of
copyright inconsistencies respectively - the committer-not-
holder inconsistency and the holder-not-committer inconsis-
tency.

To achieve our goals, we propose two definitions of
committer for the detection of two types of copyright incon-
sistency. General committers refer to all committers who
once committed source code. This definition will be used
in the detection of the holder-not-committer inconsistency,
which ensures that the holder-not-committer inconsistency
can only be detected when we can not find any information
about the holder in the committer dataset. Core committers
refer to the committers who contributed more than a mini-



QIU et al.: AN EXPLORATORY STUDY OF COPYRIGHT INCONSISTENCY IN THE LINUX KERNEL
259

mum threshold percentage of contribution. Setting a mini-
mum threshold percentage of the contribution could exclude
the minor committers who only do some simple work, and
determines the core committer from a general committer.
We will set this minimum percentage as 14.9% because it is
the least percentage of source code at the token granularity
of the contributor who committed the highest percentage of
the source code in the sample dataset. This definition will
be used in the detection of the committer-not-holder incon-
sistency.

We first detect the holder-not-committer inconsistency.
For each holder in the holder dataset, we check whether this
holder is a name of any general committer or an organiza-
tion that any general committer belongs to. A holder-not-
committer inconsistency is detected if a holder is neither a
name of any general committer or an organization that any
general committer belongs to.

We then detect the committer-not-holder inconsistency.
For each core committer in the committer dataset, we check
whether its name or organization is recorded in the holder
dataset or not. A committer-not-holder inconsistency is de-
tected if neither a core committer’s name nor its organization
is recorded in the holder dataset.

To answer RQ2, we try to find the reasons behind the
occurrence of the holder-not-committer inconsistency and
the committer-not-holder inconsistency respectively. For
each inconsistency, we manually check the commit logs and
the comments in the source code of the source files to find
out the reasons. A reason is determined only when it is
explicitly recorded in the commit logs or the comments in
source code.

5. Results

In this section, we report the results and have a discussion
on the results to address research questions in our empirical
study in Sect. 4.

5.1 RQ1: How Prevalent Are Copyright Inconsistencies?

In this research question, we analyze to what extent copy-
right inconsistencies exist in source files in the Linux kernel.

As can be seen from Table 5, 262 source files are de-
tected as having copyright inconsistencies, accounting for
63.3% of all 414 source files. As a popular and well main-
tained OSS project, the copyright ownership of the Linux
kernel should be clear and well maintained as well. The gen-
eral image of the Linux communities is that there is not too
much copyright inconsistency in the Linux kernel. An ideal
situation is expected that there is no inconsistency. However,
this result is out of our expectation and do not accord with
the general image of the communities, which suggests that
copyright inconsistencies are prevalent in the Linux kernel.

We can see that 134 source files are detected as hav-
ing the holder-not-committer inconsistency, accounting for
32.4% of all 414 source files in sample dataset, and 51.1%
of 262 source files detected as having any type of inconsis-

Table 5 The number of source files with different types of copyright
inconsistencies and the ratios. Ratio to 1© means the ratio of the source
files detected as having this type of inconsistency to all source files in the
sample dataset. Ratio to 4© means the ratio of the source files detected as
having this type of inconsistency to the source files detected as having any
type of inconsistency.

No Inconsistency #Files Ratio to 1© Ratio to 4©
1© sample dataset 414 100.0%

2© holder-not-committer 134 32.4% 51.1%
3© committer-not-holder 229 55.3% 87.4%
4© any type of inconsistency 262 63.3% 100.0%
5© both two types 101 24.4% 38.5%

tencies respectively. We can also see that 229 source files
are detected as having the committer-not-holder inconsis-
tency, accounting for 55.3% of all 414 source files in sample
dataset, and 87.4% of 262 source files detected as having
any type of inconsistencies respectively. It can be noticed
that the committer-not-holder inconsistency is more preva-
lent than the holder-not-committer inconsistency.

It is also easy to know that 101 source files are detected
as having both of two types, accounting for 24.4% of all
414 source files in sample dataset, 38.5% of 262 source files
detected as having any type of inconsistencies, 75.3% of
134 source files detected as having the holder-not-committer
inconsistency, and 44.1% of 229 source files detected as
having the committer-not-holder inconsistency respectively.
The result suggests that if the holder-not-committer incon-
sistency exists in a source file, there is also a high possibility
of the occurrence of the committer-not-holder inconsistency.
Oppositely, if the committer-not-holder inconsistency exists
in a source file, there is no such high possibility of the oc-
currence of the holder-not-committer inconsistency. It may
be a possible reason that for the source files detected as hav-
ing the holder-not-committer inconsistency, the committers
added others’ copyright notices. Another possible reason
may be that after a long time of software evolution, a lot
of new source code is committed, and the new source code
replaced the old source code committed by the committers
before. We will investigate the reasons in RQ2.

As an answer to RQ1, copyright inconsistencies are
prevalent in the Linux kernel, among which, the committer-
not-holder inconsistency is more prevalent than the holder-
not-committer inconsistency.

5.2 RQ2: What Caused the Copyright Inconsistencies?

We aim to find the reasons why copyright inconsisten-
cies happened. To achieve this goal, for the holder-not-
committer inconsistency, we manually check the commit
logs and the comments in the source code of all 134 source
files detected as having the holder-not-committer inconsis-
tency. If a reason is explicitly recorded in a sentence, we
note down that sentence. After that, we categorized all sen-
tences to summarize the reasons.

For the committer-not-holder inconsistency, we select



260
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.2 FEBRUARY 2021

some source files detected as having the committer-not-
holder inconsistency as the target. These source files should
also satisfy the condition that no holder-not-committer in-
consistency is detected. We end up with 128 source files.
For these files, all holders are the committers, so we plan to
investigate the other committers who are not holders to find
why they are not recorded in copyright notices. Different
from the holder-not-committer inconsistency, holders who
did not add their copyright notices usually did not explain
their reasons explicitly. So we try to find some hints about
why holders did not add their copyright notices no matter
they are explicit or not. We then categorized all sentences to
summarize the reasons as well.

Table 6 shows the summarized reasons why holder-not-
committer inconsistencies happened. Among them, code
reuse and refactoring are two common activities in software
development. It is possible that copyright notices are not
well managed during these activities.

To our surprise, affiliation change - the change of the
companies or organizations the developers belong to - plays
an important role in the occurrence of the copyright in-
consistency, which reveals that the management of copy-
right notices may be overlooked by the developers as well.
The “affiliation change” is found when we observed that al-
though the developer’s affiliation identified by e-mail ad-
dress is not consistent with the one in the copyright notice
currently, this developer’s affiliation may be consistent with
the one in the copyright notice before. Specifically, we ob-
served four cases: (1) The developer switches to a differ-
ent company or organization. (2) The developer belongs
to more than one company or organization. (3) The com-
pany or organization is merged into another one. (4) The
developer uses a personal e-mail address. All these cases
can be found by checking the commit logs, the comments
in the source code of the source files, and the profiles of
the developers. We also try to search the related informa-
tion on the Internet (e.g. the information of the developer
on LinkedIn†, the information of the company or organiza-
tion in Wikipedia††, etc.) to endorse our findings. Note that
we do not explore the reasons why “affiliation change” hap-
pens and whether possible legal risks exist. Developers may
just forget to update the copyright notices and the legal risks
also vary across different countries or regions. However, we
do observe that “affiliation change” is an important reason
causing copyright inconsistency and needs to be noticed.

Support function and others’ contributions are two rea-
sons why developers add others’ copyright notices when
they committed source code. Another interesting case is
All replaced, which is the situation that the source code
the holder committed is totally replaced by the source code
committed by the committers later, but the copyright notice
is retained. All replaced also suggests that copyright notices
are not well managed in the Linux kernel. We draw a con-
clusion that code reuse, affiliation change, refactoring, sup-

†https://www.linkedin.com/
††https://en.wikipedia.org/

Table 6 The reasons why holder-not-committer inconsistencies hap-
pened in the Linux kernel version 4.14.

Categorization #Source files Proportion

Code reuse 37 27.6%
Affiliation change 19 14.2%
Refactoring 14 10.4%
Support function 13 9.7%
Others’ contributions 13 9.7%
Typo 5 3.7%
All replaced 2 1.5%

None 31 23.2%

Total 134 100.0%

Table 7 The reasons why committer-not-holder inconsistencies hap-
pened in the Linux kernel version 4.14.

Categorization #Source files Proportion

Code reuse 30 23.4%
Affiliation change 12 9.4%
Refactoring 8 6.3%
Others’ contributions 7 5.5%
Typo 1 0.8%

None 70 54.6%

Total 128 100.0%

port function, and others’ contributions are the main reasons
why the holder-not-committer inconsistency occurred.

Table 7 shows the summarized reasons why committer-
not-holder inconsistencies happened. The results are similar
to the results of holder-not-committer inconsistency. Code
reuse, affiliation change, refactoring, support function, and
others’ contributions are still the main reasons why the
committer-not-holder inconsistency occurred.

Based on these findings, the following practical sug-
gestions may help practitioners: (1) When developers reuse
source code, the provenance of reused source code should
be recorded properly as well for the traceability of the copy-
right notice. (2) The list of contributors should be well
maintained as an evidence of copyright ownership. (3) The
communities should propose a set of practical guidelines for
managing the copyright notices. For example, when a copy-
right notice is added, modified, or deleted, the reason and
the coverage of influence should be recorded. (4) The copy-
right ownership should be ascertained with a finer granular-
ity such as line level or token level. The related tools are
needed to be developed.

As an answer to RQ2, we draw a conclusion that code
reuse, affiliation change, refactoring, support function, and
others’ contributions are the main reasons why copyright
inconsistency occurred.

6. Threats to Validity

This section discusses the threats to the validity of our re-
search. Threats to construct validity concern the relation-
ship between theory and outcome, and relate to possible



QIU et al.: AN EXPLORATORY STUDY OF COPYRIGHT INCONSISTENCY IN THE LINUX KERNEL
261

measurement imprecision when extracting data we used in
this study. In mining the repositories to build the committer
dataset, we first rely on cregit to summarize the names
of the committers and their contributions. cregit mea-
sures the contribution in terms of tokens. Compared with the
method measuring the contribution in terms of lines before,
cregit is more precise and could avoid the case that devel-
opers doing simple code change are seen as the owner of the
total lines. However, the precision of cregit is not proved
by a large-scale test. To limit this problem, we randomly se-
lect some source files to check the precision of cregit at the
same time when we do the empirical study. Another threat
in using cregit is its method of merging the multiple differ-
ent accounts owned by the same committer. cregitmerges
them based on the full name of the committer. This method
will be ineffective for the case that a committer uses more
than one name to commit source code to a single source file.
However, this defect does not affect the results because we
do not observe this case in our empirical study.

Another threat in building the committer dataset is that
we identify the organizations the committers belong to by
checking the domain of their e-mail addresses. But the com-
mitters possibly use their personal e-mail addresses. Also,
the committers may not change their e-mail addresses in
Github when they change their organizations. For these
cases, we can not rightly identify their organizations. Con-
sidering that we also track the change of their organizations
in answering the RQ2, this threat might have an impact on
our empirical study as well.

In mining the repositories to build the holder dataset,
we first rely on FOSSology to extract the copyright notices.
Although we manually check the copyright notices detected
by FOSSology to remove the wrongly detected ones, FOS-
Sology could have missed some copyright notices. We plan
to use other methods or tools to do the detection in the fu-
ture.

Another case worthwhile of being discussed is the min-
imum threshold percentage of contribution to define the
committer used to detect the committer-not-holder incon-
sistency. We have set this minimum threshold percentage as
14.9%. The percentage of source files detected as having the
committer-not-holder inconsistency will increase if we do
not set it. In our calculation, if we would lift the threshold,
87.9% of all source files are detected as inconsistent, which
proves the effectiveness of the minimum threshold percent-
age in excluding the minor committers who only do some
simple work. Some studies set the minimum threshold per-
centage as 5% to exclude the minor contributors [10], [11].
To what extent the contribution is needed to become a qual-
ified contributor or state the copyright ownership is still a
complicated problem under discussion.

Another threat requiring consideration is the effective-
ness of the sampling. To achieve an accurate result, a lot
of manual works are included in our proposed method to
detect copyright inconsistency, for which we have intro-
duced sampling. To validate the effectiveness of the sam-
pling and the manual works, we have conducted a compari-

son experiment. We first designed a fully-automatic method
without manual works to detect copyright inconsistency and
then used it to detect copyright inconsistencies targeting all
38,932 source files in the Linux kernel and 500 source files
the sample dataset respectively. For all source files in the
Linux kernel, 19,261 source files out of 38,932 total source
files are detected as having hold-not-committer inconsis-
tency, accounting for 49.5%, and 24,143 source files are de-
tected as having committer-not-hold inconsistency, account-
ing for 62.0%. For the sample dataset, 228 source files out of
500 files are detected as having hold-not-committer incon-
sistency, accounting for 45.6%, and 309 source files are de-
tected as having committer-not-hold inconsistency, account-
ing for 61.8%. It is easy to find that the results are simi-
lar, which suggests that the sampling is effective. Also, this
sampling method based on population size, confidence in-
terval, and confidence level is well established. It is first
proposed by Krejcie and Morgan in 1970 [12], and widely
used and proven by other related works [13]–[15]. Then we
have compared the results detected by the proposed method
in Table 5 and the results detected by the newly designed
fully-automatic method targeting the sample dataset. The
proportions detected by the proposed method are smaller.
Because of the manual works in the proposed method, the
copyright inconsistencies detected by the proposed method
are all actual ones while the copyright inconsistencies de-
tected by the newly designed fully-automatic method are
not. The results suggest that the manual works are effective
and could improve accuracy.

Threats to internal validity concern factors internal to
the study that could impact our results. Such a kind of threat
does not affect exploratory study like the one in this paper.
The only case worthwhile of being discussed is our answer-
ing to RQ2, where we classify the reasons manually based
on our knowledge.

Threats to external validity are related to the ability to
generalize the finding in our study. Our empirical study is
only conducted on the Linux kernel. Linux kernel is the
most popular and successful open-source operating system
kernel, receiving contribution from 13,500 developers from
more than 1,300 organizations. These features make Linux
kernel a suitable target to study copyright inconsistencies.
But according to the different requirements about the copy-
right, other open-source projects may have different results.
We agree that it is necessary to replicate our empirical study
on different projects.

Another case worthwhile of being discussed is the gen-
eralization of our findings in RQ2. To address this issue, we
have repeated our experiment targeting another version of
the Linux kernel and checked whether or not we can achieve
similar results. The new experiment targeted version 5.80
of the Linux kernel, from which we randomly selected 500
source files to construct the sample dataset. After removing
the source files once moved or renamed, we ended up with
a sample dataset of 390 source files. We then repeated the
detection. Among these 390 source files, 126 source files
are detected as having hold-not-committer inconsistency,



262
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.2 FEBRUARY 2021

Table 8 The reasons why holder-not-committer inconsistencies hap-
pened in the Linux kernel version 5.80.

Categorization #Source files Proportion

Code reuse 38 30.2%
Affiliation change 21 16.7%
Refactoring 12 9.5%
Support function 17 13.5%
Others’ contributions 8 6.3%
Typo 2 1.6%

None 28 22.2%

Total 126 100.0%

Table 9 The reasons why committer-not-holder inconsistencies hap-
pened in the Linux kernel version 5.80.

Categorization #Source files Proportion

Code reuse 25 22.5%
Affiliation change 9 8.1%
Refactoring 6 5.4%
Others’ contributions 2 1.8%

None 69 62.1%

Total 111 100.0%

accounting for 32.3%, while 205 source files are detected
as having committer-not-hold inconsistency, accounting for
52.6%. Among the 205 source files where committer-not-
hold inconsistency are detected, 111 source files are de-
tected as having only committer-not-hold inconsistency and
no hold-not-committer inconsistency. Then we have used
the same method to find reasons behind the occurrence of
the copyright inconsistency. Table 8 and Table 9 show the
results. The similar results suggest the ability to generalize
the finding in RQ2.

7. Related Work

7.1 Software Ownership

Some studies in software engineering investigated software
ownership. Girba et al. built the ownership based on the per-
centage of source code lines modified by contributors [16].
Tsikerdekis et al. proposed a code contribution ranking al-
gorithm to build the ownership by tracking the survival of
individual characters [17]. Bird et al. explored the effects
of ownership on software quality [10]. Compared with their
works, we use a more accurate and reasonable measure -
token - to measure contributions. Especially, different from
the above works, we also included copyright notice into con-
sideration. Our work opens up a new way to study software
ownership.

7.2 OSS Contributor

There are some studies that devoted to investigate OSS con-
tributors and their contributions. German et al. studied the

committers of the PostgreSQL project and found that apart
from the core team, a large number of contributors sent
source code patches to the project [18]. Hindle et al. discov-
ered that the large commits including a large number of files
are related to license or copyright owners [19]. Hammad et
al. proposed two measures to measure the contribution of
software developers in the evolved structural design of soft-
ware systems [20]. Different from their works, we discussed
the discrepancy between the contributors’ contributions and
the recorded copyright notices. Our work creates a possibil-
ity of importing the existing works on OSS Contributor into
the software copyright management of the FOSS projects.

7.3 Software License

There are some studies that devote to identify licenses [5],
[21]. Based on these studies, some researchers analyzed
software licenses in open source projects and revealed some
license issues. German et al. proposed a method to un-
derstand licensing compatibility issues in software pack-
ages [22]. Wu et al. proposed an approach to find license
inconsistencies in similar files [23]. By investigating the re-
vision history of these files, they summarized the factors
that caused these license inconsistencies and tried to decide
whether they are legally safe or not. Studies on software
license are also closely related to this work. Many studies
in software engineering investigated software license. How-
ever, to solve the legal risks in reusing FOSS, only the stud-
ies on software license are not sufficient. This work is a
supplement to works on software license by studying the
software ownership.

8. Conclusion and Future Work

In this paper, we first proposed the issue of copyright incon-
sistency, and then we defined copyright inconsistency and
categorized different types of it. After that, we conducted
an empirical study on the Linux kernel to study the preva-
lence of copyright inconsistency. To the best of our knowl-
edge, this study is the first in this field to address this issue.
We observed that the copyright inconsistency is prevalent
in the Linux kernel. It suggests that the copyright notices
recorded in the source files do not always reflect the actual
contributors. To find how copyright inconsistency happens,
we had a deeper look at the commit logs and the comments
in source code to find the reasons why the copyright incon-
sistencies happened. We found that code reuse, affiliation
change, refactoring, support function, and others’ contribu-
tions are the main reasons.

The proposed method and results of this work can be
reused in the following aspects: (1) The proposed method
of detecting copyright inconsistency can be reused in other
OSS projects to study the situation of copyright inconsis-
tency in them. (2) Our findings on the prevalence of copy-
right inconsistency and the reasons causing them can be
used as a benchmark to study the difference in the copyright-
related issue among different OSS projects. (3) Our findings



QIU et al.: AN EXPLORATORY STUDY OF COPYRIGHT INCONSISTENCY IN THE LINUX KERNEL
263

also provide a new perspective to study software develop-
ment management, code reuse, and the organizational cul-
ture in OSS projects. (4) The datasets constructed in this
work can be reused in other highly related works such as the
participation of developers or companies in OSS projects
and the collaboration between them.

In our future work, we will make some guidelines for
developers to help them in dealing with copyright notices.
We also aim to find a solution to manage the copyright no-
tices in the FOSS projects.

References

[1] M. Larabel, “The linux kernel enters 2020 at 27.8 million lines
in git but with less developers for 2019,” Web page at linux.com,
https://www.phoronix.com/scan.php?page=news item&px=Linux-
Git-Stats-EOY2019, Jan. 2020.

[2] T. Golder and A. Mayer, “Whose ip is it anyway?,” Journal of Intel-
lectual Property Law & Practice, vol.4, no.3, pp.165–175, 2009.

[3] H. Meeker, “Patrick mchardy and copyright profiteering,” Web
page at opensource.com, https://opensource.com/article/17/8/
patrick-mchardy-and-copyright-profiteering, Aug. 2017.

[4] H. Welte, “Report from the geniatech vs. mchardy gpl viola-
tion court hearing,” Web page at gnumonks.org, https://laforge.
gnumonks.org/blog/20180307-mchardy-gpl/, March 2018.

[5] R. Gobeille, “The FOSSology project,” 2008 International working
conference on Mining software repositories (MSR2008), pp.47–50,
2008.

[6] M.D. Penta and D. German, “Who are source code contributors and
how do they change?,” 2009 16th Working Conference on Reverse
Engineering, pp.11–20, Jan. 2009.

[7] Oracle, “Oracle contributor agreement - version 1.7.1,” Web page
at oracle.com, https://www.oracle.com/technetwork/community/
oca-486395.html#list, 2019.

[8] J. Corbet and G. Kroah-Hartman, “2017 linux kernel development
report,” A Publication of The Linux Foundation, 2017.

[9] D.M. German, B. Adams, and K. Stewart, “cregit: Token-level
blame information in git version control repositories,” Empir. Softw.
Eng., vol.24, issue 4, pp.2725–2763, 2019.

[10] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu,
“Don’t touch my code! examining the effects of ownership on
software quality,” Proc. 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering -
SIGSOFT/FSE ’11, pp.4–14, 2011.

[11] M. Foucault, J.-R. Falleri, and X. Blanc, “Code ownership in open-
source software,” Proc. 18th International Conference on Evaluation
and Assessment in Software Engineering - EASE ’14, pp.1–9, 2014.

[12] R.V. Krejcie and D.W. Morgan, “Determining sample size for re-
search activities,” Educ. Psychol. Meas., vol.30, no.3, pp.607–610,
1970.

[13] H. Hata, C. Treude, R.G. Kula, and T. Ishio, “9.6 million links
in source code comments: purpose, evolution, and decay,” 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp.1211–1221, IEEE, 2019.

[14] Z. Gao, C. Bird, and E.T. Barr, “To type or not to type: quantifying
detectable bugs in javascript,” 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pp.758–769, IEEE,
2017.

[15] A.D. Veiga, “A cybersecurity culture research philosophy and ap-
proach to develop a valid and reliable measuring instrument,” 2016
SAI Computing Conference (SAI), pp.1006–1015, IEEE, 2016.

[16] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers
drive software evolution,” 8th international workshop on principles
of software evolution (IWPSE’05), pp.113–122, 2005.

[17] M. Tsikerdekis, “Persistent code contribution: A ranking algorithm

for code contribution in crowdsourced software,” Empir. Softw.
Eng., vol.23, no.4, pp.1871–1894, 2018.

[18] D.M. German, “A study of the contributors of PostgreSQL,” Proc.
2006 international workshop on Mining software repositories -
MSR ’06, pp.163–164, 2006.

[19] A. Hindle, D.M. German, and R. Holt, “What do large commits tell
us? a taxonomical study of large commits,” Proc. 2008 international
workshop on Mining software repositories - MSR ’08, pp.99–108,
2008.

[20] M. Hammad, M. Hammad, H. Bani-Salameh, and E. Fayyoumi,
“Measuring developers’ design contributions in evolved software
projects,” Journal of Software, vol.9, no.12, pp.3005–3011, 2014.

[21] D.M. German, Y. Manabe, and K. Inoue, “A sentence-matching
method for automatic license identification of source code files,”
Proc. IEEE/ACM international conference on Automated software
engineering - ASE ’10, pp.437–446, 2010.

[22] D.M. German, M.D. Penta, and J. Davies, “Understanding and au-
diting the licensing of open source software distributions,” 2010
IEEE 18th International Conference on Program Comprehension,
pp.84–93, 2010.

[23] Y. Wu, Y. Manabe, T. Kanda, D.M. German, and K. Inoue, “A
method to detect license inconsistencies in large-scale open source
projects,” 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, pp.324–333, 2015.

Shi Qiu received his B.E. degree of soft-
ware engineering from Jilin University in 2013
and his M.E. degree of information science and
technology from Osaka University in 2018. At
present, he is a Ph.D. student in the Graduate
School of Information Science and Technology
at Osaka University. His research interests in-
clude mining software repositories, software li-
cense/copyright analysis, and software ecosys-
tem.

Daniel M. German is Professor in the De-
partment of Computer Science at the University
of Victoria, where he does research in the ar-
eas of mining software repositories, open source
software ecosystems and the impact of intellec-
tual property in software engineering.

Katsuro Inoue received his Ph.D. from
Osaka University in 1984. He was an asso-
ciate professor of University of Hawaii at Manoa
from 1984 to 1986. After becoming an assistant
professor of Osaka University in 1986, he has
been a professor since 1995. His research in-
terests include software engineering, especially
software maintenance, software reuse, empirical
approach, program analysis, code clone detec-
tion, and software license/copyright analysis.

http://dx.doi.org/10.1093/jiplp/jpn248
http://dx.doi.org/10.1145/1370750.1370763
http://dx.doi.org/10.1109/wcre.2009.41
http://dx.doi.org/10.1007/s10664-019-09704-x
http://dx.doi.org/10.1145/2025113.2025119
http://dx.doi.org/10.1145/2601248.2601283
http://dx.doi.org/10.1177/001316447003000308
http://dx.doi.org/10.1109/icse.2019.00123
http://dx.doi.org/10.1109/icse.2017.75
http://dx.doi.org/10.1109/sai.2016.7556102
http://dx.doi.org/10.1109/iwpse.2005.21
http://dx.doi.org/10.1007/s10664-017-9575-4
http://dx.doi.org/10.1007/s10664-017-9575-4
http://dx.doi.org/10.1145/1137983.1138022
http://dx.doi.org/10.1145/1370750.1370773
http://dx.doi.org/10.4304/jsw.9.12.3005-3011
http://dx.doi.org/10.1145/1858996.1859088
http://dx.doi.org/10.1109/icpc.2010.48
http://dx.doi.org/10.1109/msr.2015.37

