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Software metadata

Software metadata description

Current software version v0.2.3
Permanent link to executables of this version Recorder: https://github .com /takashi -ishio /selogger /releases /tag /v0 .2 .3

Post-processor and Interactive View: https://github .com /k-shimari /nod4j /releases /tag /v0 .2 .3
Legal Software License The MIT License (MIT)
Computing platform/Operating System Recorder: Any operating system where Java runtime is available

Post-processor and Interactive View: Any operating system where Java and Node.js are available
Installation requirements & dependencies Java SE Runtime Environment, npm, Node.js
If available Link to user manual https://github .com /takashi -ishio /selogger /blob /develop /README .md & https://

github .com /k-shimari /nod4j /blob /master /README .md
Support email for questions k-simari @ist .osaka -u .ac .jp

Code metadata

Code metadata description

Current code version v0.2.3
Permanent link to code/repository used of this code 

version
https://github.com/ScienceofComputerProgramming/SCICO-D-20-00066

Legal Code License The MIT License (MIT)
Code versioning system used git
Software code languages, tools, and services used Java, TypeScript, React, ANTLR
Compilation requirements, operating environments & 

dependencies
Java SE Development Kit, Apache Maven

If available Link to developer documentation/manual (N/A)
Support email for questions k-simari@ist.osaka-u.ac.jp

1. Introduction

Debugging is a methodology used to identify defects in the source code by diagnosing its external behavior. For efficient 
debugging, developers monitor the execution order of instructions and actual values of variables in the source code [1]. 
Additionally, developers may compare program behavior at the various points of execution where a failure does or does not 
occur [2,3]. Interactive visualization tools such as JIVE [4] and break-point debuggers are useful for such analysis; however, 
developers struggle to use these tools for systems that run on continuous integration and web application servers.

Logging is a common practice that is used to record a program execution as a sequence of messages that report a 
software’s progress and its important data [5]. However, logs recorded in production may not contain sufficient data for 
debugging because the data to be logged is determined at development time [6]. Therefore, to enable efficient debugging, 
an automatic method capable of recording a detailed program’s execution is needed.

Omniscient debugging [7] is a method that can be used to record all the runtime events during program execution. 
Although the method enables developers to inspect the state of a program at an arbitrary point in execution, it results in a 
huge execution trace, and in some cases, grows as fast as 10 MB per second [8]. Developers have difficulty estimating the 
size of an execution trace prior to execution. Therefore, this implies difficulty in determining what data should be logged to 
fix bugs in a deployed environment [9].

In our previous work, we proposed Near-Omniscient Debugging for Java using size-limited execution traces [10]. Since a 
full execution trace includes many uninteresting method calls such as utility functions [9], we introduce a parameter k that 
specifies the maximum number of recorded values for each instruction. This parameter limits the size of an execution trace 
for repeatedly executed instructions, while keeping all actual values of the variables associated with instructions that are 
executed less than k times. Our result shows that 1% of complete execution traces enabled us to obtain data dependencies 
with a precision of 91.8% and recall of 79.0% from the traces.

In this work, we present a tool NOD4J (Near-Omniscient Debugger for Java), which records and visualizes an execution 
trace within limited storage space constraints. The tool records local variables and fields used in a Java program execution 
and annotates the source code with the recorded values. We describe the implementation details and show two usage 
examples of debugging actual bugs.

In the remainder of the paper, Section 2 explains the background of the tool and Section 3 describes its implementation. 
Then, Section 4 describes usage examples. Finally, Section 5 concludes the paper and describes future work.

2. Background

Inspecting the runtime behavior of a program is an important activity for debugging. To achieve this goal, omniscient 
debugging records all the runtime events such as memory access inside a program. Similarly, Record-and-Replay meth-
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ods [11–13] record all the interactions between a program and its external environment. As with omniscient debugging, the 
approach may result in a huge execution trace [13].

One of the causes for larger execution traces is the repetition of the program instructions. To reduce the size of the 
execution traces, various compression and sampling methods have been proposed. Wang et al. [14] proposed an effective 
compression method tailored for execution traces comprising a sequence of memory addresses accessed by a program. 
Cornelissen et al. [9] reported that execution traces excluding unimportant utility functions retain more information than 
a trace filtered by a simple sampling algorithm using the same storage space. Hizrel et al. [15] proposed Bursty Tracing, a 
sampling method that periodically turns monitoring on and off. However, users of those methods cannot estimate the size 
of a trace prior to a program execution. NOD4J enables users to specify the size of an execution trace.

NOD4J is a tool to visualize the values of variables recorded in a program execution. Exiting tools, JIVE and Querypoint, 
provide similar features. JIVE is an interactive execution environment for Eclipse that visualizes a Java program execution 
at runtime [4]. While JIVE adds useful features to Eclipse debugger, it cannot visualize a program execution outside of 
the debugger such as continuous integration. Querypoint is a Firefox plugin, which provides critical information for debug-
ging JavaScript programs [16]. This tool provides a program location where a questionable value was assigned. Instead of 
recording an execution trace, Querypoint executes the program twice; The first execution observes values and the second 
execution identifies the point where a questionable value was assigned.

3. NOD4J overview

Our tool named NOD4J records a partial execution trace of a Java program and generates an HTML-based view to in-
teractively explore the recorded trace on a web browser. Fig. 1 illustrates the key idea of our tool. In this figure, we have 
a limited storage space that can record up to six steps of program execution. Suppose an execution comprises nine steps, 
as indicated by numbers in yellow boxes. A naive time-series logging records the last six steps as indicated in the bottom 
of the figure. On the other hand, our tool prepares buffers for each line of code in order to record the latest step for each 
line, as shown on the right side of the figure. This approach discards an execution trace for repeated instructions in the 
loop but retains the other information completely. By recording the latest observed values, abnormal behaviors are likely 
recorded in case a program crashes. Because the trace retains the program’s initialization process which is executed only 
once, developers can also analyze the configuration parameters of the execution.

Our tool comprises three components: trace recorder, post-processor, and interactive view. The trace recorder component 
records an execution trace of a Java program in storage. The post-processor component links the recorded trace to the source 
files of the program. The interactive view shows the source code contents annotated with trace information. The following 
subsections explain each component in detail.

3.1. Trace recorder

Our recorder component named SELogger (Logger for Software Engineering research) is an extension of the existing trace 
recorder for REMViewer [17], an omniscient debugging tool. It is implemented as a Java agent working inside a Java Virtual 
Machine. During program execution, the recorder monitors class loading events and injects logging instructions into the 
loaded classes using ASM, a Java bytecode manipulation framework.1 The injected logging instructions are executed as a 
part of the target program. The standard library classes (e.g., java and javax packages) are excluded from injection in 
order to avoid license issues.

Table 1 shows a list of major runtime events recorded by the component. To capture inter-procedural control-flow in 
a program execution, the recorder component uses two types of events defined in AspectJ [18]: Method Execution and 
Method Call. A Method Execution event is recorded when a method body is executed (i.e., on a callee side), while a Method 
Call event is recorded before a method invocation instruction is executed (i.e., on a caller side). Fig. 2 shows an example 
code fragment indicating the locations of logging instructions for methodE. In the code fragment, a Call event is recorded 
at line 3, and then methodE is called at line 4. The Call event is followed by a Method Entry event of an actually executed 
method depending on the type of this object; line 10 records a Method Entry event if the method is selected by dynamic 
binding. When the execution of the method is finished, a Method Normal Exit event representing the location of a return 
statement is recorded. Finally, a Call Return event is recorded on the caller side. The sequence of events enables us to 
trace the actual execution path determined at runtime. In addition to the control-flow information, their arguments, return 
values, and exceptions are also recorded in an execution trace. It is worth noting that a single instruction may be recorded 
as multiple runtime events; for example, a method execution is represented by a Method Entry event recording a receiver 
object and a number of Method Param events recording the parameters.

The recorder component also records three types of memory access: local variables, fields, and arrays. The Local Load 
and Local Store events record actual values read from and written to local variables in a trace. The Local Increment event 
represents a pair of Local Load and Local Store performed by an increment instruction (e.g. “i++”) that frequently appears 
in a program. Events in the Field Access category record object references in addition to values read from and written to 

1 https://asm .ow2 .io/.
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Fig. 1. An execution trace of NOD4J recording k events for each instruction (k = 1). (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Table 1
Major runtime events recorded by the recorder component.

Event Category Event Name Recorded data

Method Execution Method Entry Receiver object
Method Param Parameter given to the method
Method Normal Exit Returned value from the method
Method Exceptional Exit Exception thrown by the method

Method Call Call Receiver object
Call Param Parameter passed to the callee
Call Return Returned value from the callee

Local Variable Local Load Value read from the variable
Local Store Value written to the variable
Local Increment Value written to the variable

by an increment instruction

Field Access Get Instance Field Object whose field is read
Get Instance Field Result Value read from the field
Put Instance Field Object whose field is written
Put Instance Field Value Value written to the field

Array Access Array Load Accessed array to read
Array Load Index Accessed index to read
Array Load Result Value read from the array
Array Store Accessed array to write
Array Store Index Accessed index to write
Array Store Value Value written to the array
Array Length Array whose length is referred
Array Length Result The length of the array

1: void methodD() {
2: ...
3: // record a Call event of methodE
4: this.methodE();
5: // record a Call Return event of methodE
6: ...
7: }
8:
9: void methodE() {
10: // Record a Method Entry event of methodE
11: try {
12: // Original content of methodE
13: ...
14
15: // Record a Method Exit event of methodE
16: } catch (Throwable e) {
17: // Record a Method Exceptional Exit event of methodE
18: throw e;
19: }
20: }

Fig. 2. An example of logging code locations for recording Method Execution and Call events.

the fields. Similarly, events in the Array Access category record array references and their accessed indices. Although most 
memory read events just record the same values as their preceding memory write events, the tool records all the Field 
Access and Array Access events because their values may be updated by library classes whose behavior is not observed by 
the tool.
4
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Table 2
Events linked to identifiers in source code.

Event Identifiers in source code

Method Param for a parameter par The formal variable name par in a method declaration,
e.g. “void m(Type par)”

Local Load reading a variable var The variable name var in an expression
Local Store writing to a variable var The variable name var on the left hand side of

an assignment expression, e.g. “var = e” and “var += e”
Local Increment updating a variable var (1) The variable name var on the left hand side of

an assignment expression, e.g. “var = var + constant”
(2) The variable var in a pre-/post-increment expression:
var++, var-, ++var, or -var

Get Field Result reading from a field f The field name f in an expression
Put Filed Value writing a field f The field name f on the left hand side of

an assignment expression, e.g. “f = e” and “x.f = e”

An execution trace is a sequence of events 〈d, t, v〉 where d is a data ID to identify an event of a particular instruction, 
t represents the thread that executed the instruction, and v represents the observed value. A data ID d is assigned by the 
recorder component during the bytecode instrumentation. When the methodA() in Fig. 1 is called, the recorder component 
assigns four IDs to represent the following method execution events.

• A method entry event recording the receiver object (that is, the value of this).
• An actual parameter event that records the value of var passed to the method.
• A normal exit event. Although the method does not return any value, the event represents a successful termination of 

the method.
• An exceptional exit event recording an exception if the method is terminated by an exception.

The component also assigns data IDs to every instruction in the method.
Our tool records the latest k events for each data ID d. Then, it takes buffer size k as a parameter, allocates buffers for 

each data ID, and accumulates the observed events alongside their sequence numbers (i.e., an increasing number represent-
ing the order of events). When the program has finished, the tool writes the accumulated data to storage using a shutdown 
hook function in the Java virtual machine. The maximum trace size is k × N where N is the number of data elements used 
by instructions in a program. Our tool with k = ∞ is conceptually equivalent to omniscient debugging.

To enable users to investigate how objects are manipulated, our tool translates object references into object IDs composed 
of its class name and a number. For String and Exception objects, the tool records their textual contents with object IDs for 
ease of debugging. Our current implementation simply records the textual contents as is. For this reason, in case of long 
strings, the trace size could still be large. Thus, an effective recording of textual contents will be considered in future work.

3.2. Post processor

The post-processor component links the source code contents of a program to data elements in an execution trace of 
the program produced by the recorder component. Conceptually, the output of the component is a mapping {l �→ d}, where 
l is the location of an identifier in the source code and d is a data element in a trace. Source-to-trace mapping enables an 
interactive view to show appropriate data values for each source code location of interest to a user.

Table 2 shows the runtime events linked to the source code. The component produces one-to-one mapping for those 
events because a single identifier in the source code corresponds to a method parameter, a local variable, or a field name 
recorded as those events. For example, suppose an expression x=y is in a source file. The assignment x= can either be (1) 
a Local Store event for a local variable x or (2) a Put Field Value event for a field x corresponding to the line. If those 
events are recorded, the identifier is linked to them. The link enables an interactive view to show actual values assigned to
x. Similarly, the variable y is linked to either (1) a Local Load event for a local variable y or (2) a Get Field Result event for 
a field y. The identifier is linked to those events so that the interactive view can show actual values read from y. To link the 
events and identifiers, the component builds a syntax tree for each source file, extracts identifiers from the tree, and then 
identifies their corresponding events in the trace. In the last step, the tool searches local variable access and field access 
events using the source file name, the line number of the expression, and the identifier names such as x and y. The search 
depends on the heuristics as shown in Table 2 instead of a deeper semantic analysis of the source code. This is because 
such a semantic analysis requires the whole program and libraries to take class inheritance and static import mechanisms 
into account.

Some runtime events have no corresponding tokens in the source code. For example, the return value of a method call 
may be discarded without an assignment operator. To visualize such invisible events in a trace, the post-processor translates 
them into pseudo variables as shown in Table 3. The pseudo variables are also included in the source-to-trace mapping.
5
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Table 3
The pseudo variables representing invisible values 
on source code.

Event Name Variable Name

Call Return _ReturnValue
Array Load Result _ArrayLoad
Array Store Value _ArrayStore
Array Length Result _ArrayLength

3.3. Interactive view

The interactive view component is an HTML-based view that works on a web browser. Using the source-to-trace mapping 
produced by the post-processor component, each tab displays a source file, whose variables are highlighted. By hovering a 
mouse cursor on a highlighted variable, the actual values of the variable recorded in the trace are displayed. For example, 
Fig. 3 shows a screenshot of an interactive view displaying the values of var in ascending order by time.

This interactive view can filter values by specifying a time interval. For example, in Fig. 3, a user can click on the arrows 
shown on the right side of each value. A click on the left arrow specifies a start point of an interval, while a click on the 
right arrow specifies the end point. Fig. 4 shows the interactive view displaying observed values after assigning 32 to var at 
line 15. If no values are recorded for a variable during the specified time interval, the highlighting for that variable is turned 
off. In Fig. 4, the highlighting of var at line 13 disappeared as a result of filtering. It should be noted that interactive views 
share a single filter within multiple tabs. A user can investigate an inter-procedural data-flow by selecting an arbitrary pair 
of source code locations in a program.

The interactive view also provides a textual representation of runtime events linked to a source file. The following 
example shows the textual representation for the example program.

...
ID:16, Line:5, Variable:_ReturnValue, Seqnum:45, Data:8
ID:28, Line:10, Variable:var, Seqnum:8, Data:127
...

Each line shows five attributes of an event: data ID d (ID), line number (Line), variable name (Variable), sequence 
number (Seqnum), and recorded data value (Data). On the textual representation, we can perform a keyword search on 
the recorded values. We can also refer to the invisible values in a table. For example, we cannot check a returned value 
from the method call at line 5 because the value is not assigned to any variable. In the above example, we can check the 
value as a pseudo variable _ReturnValue, which means the method returned value on the line. The interactive view uses 
a subset of events recorded by the recorder component. For example, thread ID is available but omitted from the view. This 
is because a naive visualization of all the details of runtime events may be too complicated for users.

3.4. Usage

The tool is available on GitHub. The main repository,2 named nod4j, includes the binary files of the tool and the source 
code of the post-processor and interactive view components. The following command builds the tool from source code using 
Maven. The nod4j.jar file is created in target directory.

git clone https://github.com/k-shimari/nod4j.git
cd nod4j
mvn package

The source code of the recorder component is separated in another repository3 because the recorder may be used for 
other research. The tool is dependent on the following tools and libraries. The version numbers show the environment of 
the authors on Windows 10.

• Java(TM) SE Runtime Environment (build 1.8.0_241-b07)
• Apache Maven (3.6.3)
• Node.js (v12.16.1 LTS)
• npm (6.14.4)

2 https://github .com /k-shimari /nod4j.
3 https://github .com /takashi -ishio /selogger.
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Fig. 3. Trace View. Fig. 4. Trace View with Filtering.

To explain the usage of our tool, we performed a debugging session of a small program. This program is included in the
sample/demo/for_build directory of the nod4j repository. The program implements a method to select the maximum 
number from the three given numbers as follows:

public class Main {
public static int getMax(int num1, int num2, int num3) {

// return the maximum number of three arguments
}

}

To test the method, the file getMaxTest.java contains the following test cases that provide parameters 10, 20, and 
30 in different orders to the target method.

10: @Test
11: public void getMaxTest1() {
12: assertEquals(30, Main.getMax(30, 10, 20));
13: assertEquals(30, Main.getMax(30, 20, 10));
14: assertEquals(30, Main.getMax(20, 10, 30));
15: assertEquals(30, Main.getMax(20, 30, 10));
16: assertEquals(30, Main.getMax(10, 20, 30));
17: assertEquals(30, Main.getMax(10, 30, 20));
18: }

The following command executes the test cases of the sample program.

cd sample/demo/for_build/
mvn test

The command reports a failure as follows:

java.lang.AssertionError: expected:<30> but was:<20>
at testsample.getMaxTest.getMaxTest1(getMaxTest.java:17)

The last test case at line 17 fails and a log message for the test case shows that the expected return value is 30 but the 
actual return value is 20.

To debug the problem using our tool, the pom.xml file for the program specifies the following argument for a Java VM 
executing the test case.
7
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Fig. 5. The Welcome Page of NOD4J. Fig. 6. The Browser Page of NOD4J.

-javaagent:"../../../selogger-0.2.3.jar=output=../selogger,size=64,
e=junit/framework/,e=org/junit/,e=org/apache/maven,e=org/hamcrest"

The -javaagent option points to the recorder component called selogger-0.2.3.jar located in the top directory of 
the main repository. The remaining text is the parameters for recording. The output=../selogger parameter specifies 
an output directory. The size=64 parameters specify the buffer size k = 64. The “e=...” parameters specify package 
names to be excluded from the execution trace. In this configuration, the recorder component excludes the Maven and JUnit 
classes. The execution trace is stored in the sample/demo/selogger directory.

To use the interactive view, we need to link the source code to the execution trace.

java -jar nod4j.jar sample/demo/for_build sample/demo/selogger
src/main/frontend/src/assets/project/demo

The three arguments specify a source code directory, an execution trace directory, and an output directory, respectively.
The command produces two json files, fileinfo.json and varinfo.json, in the specified output directory. We 

put the json files in src/main/frontend/src/assets/project/demo so that the interactive view can read the json 
files. Then, we can build HTML contents from the json files and start a server for the contents. To build HTML contents, we 
execute the following commands in the src/main/frontend directory.

npm install
npm run build
npm run server

The npm install command is for installing dependencies, so this command needs to be run only once. The npm run 
build command executes the post-processor component. The npm run server command starts a web server for the 
interactive view. A web browser can access the view through a local address localhost:8070.

Fig. 5 shows the welcome page of the interactive view. NOD4J checks subdirectories in src/main/frontend/src/as-
sets/project/demo and automatically shows the names in the project list. Then, by clicking the project name and 
traversing the directory shown in Fig. 6, we can access the file we want to see the execution.

To analyze the failure of the example program, open the file src/sample/Main.java. Fig. 7 shows the view of the 
target method in the file. All test cases return a value on the variable max at line 26. Then, we can confirm that the sixth 
return value, 20, caused the test failure. To visualize the computation for this invalid return value, we filter the execution 
with a time interval from the initialization of num1 at line 8 by clicking on the left arrow of the sixth value of num1 at line 
8.

Fig. 8 shows the filtering result. The highlighted variables show that the max was incorrectly assigned at line 12. We can 
fix this bug by changing the variable num1 to num2 at line 11.

In this example, the target method includes a loop at lines 23–25 that is irrelevant to the test cases. Although the loop 
results in a large number of steps in a full execution trace, our tool excludes those steps from the trace.
8
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Fig. 7. The Interactive View for the Current Scenario. Fig. 8. The Result of the Filtering.

4. Usage examples

We illustrate two actual debugging sessions using the tool. We use bugs in the Defects4J benchmark version 1.5.04

executed on Java(TM) SE Runtime Environment (build 1.7.0_80-b15). We chose Lang 2b and Math 59b as examples, because 
the former resulted in a relatively smaller execution trace among the bugs and the latter resulted in a larger execution 
trace. We recorded the execution trace of a failed test method for each bug. When more than one test method failed, we 
ran only the top one shown in the result of the detects4j info command. The traces record only the behavior of the 
source code of the project. In other words, the recorded traces contain method calls to libraries (e.g., Assertion class in 
JUnit) in the target unit tests but do not contain the internal behavior of the libraries.

4.1. Use Case 1: Lang 2b

The first example is Lang 2b, a bug of the LocaleUtils.toLocale() method. The method takes a String object 
representing a locale name and returns a Locale object corresponding to the name if the name is in the correct format. The 
method is tested using a method named testParse AllLocales() in the file src/test/java/org/apache/com-
mons/lang3/LocaleUtilsTest.java. The test method fails and provides the following log messages to the standard 
output:

Should not have parsed: ja_JP_JP_#u-ca-japanese
Should not have parsed: th_TH_TH_#u-nu-thai

To debug this problem, we obtained an execution trace of the failed test method using our trace recorder with k = 64. The 
resulting execution trace completely recorded the behavior of 262 out of 418 instructions (62.7%). The other instructions 
were executed more than 64 times. The size of the trace is 167 KB, which is 52.2% of its full execution trace (348 KB).

Fig. 9 shows the test method testParseAllLocales() in the interactive view. The test method obtains all available 
locales and passes their names to the method under test. If the locale name has a suffix (“#”), the method under test 
should throw an exception. Otherwise, the method should return a Locale object corresponding to the locale name. The 
test method counts the number of occurrences of incorrect behavior using a variable failures. The test method failed 
because the failures was greater than zero.

The interactive view provides the actual values of the str variable as shown in Fig. 10. From this information, we 
can confirm that this test failed because the method under test did not throw IllegalArgumentException for locale 

4 https://github .com /rjust /defects4j/, Commit bd32d9642e12.
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Fig. 9. A test method for LocaleUtils.toLocale method in Lang 2b.

Fig. 10. Actual parameter values that induced a failure in Lang 2b.

names including “#”. Fig. 9 also shows that lines 572 through 573 were not executed because the variables on the lines are 
not highlighted.

Then, we open the file that contains the target method toLocale() to analyze the failure in detail. The first half of the 
method is shown in Fig. 11, the second half is in Fig. 12, respectively. While the method is executed several times, we are 
interested in only a failed execution whose argument includes “#”. Hence, we filter the interesting behavior by clicking on 
a down arrow on the right side of a string value “th_TH_TH_#u-nu-thai” shown in Fig. 11. This view shows a partial 
trace recorded after the value was observed at the beginning of the method. The highlighted variables show the execution 
flow at that time. In Fig. 11, there is no highlighted variable in the if statement’s body from line 98 to 115. However, 
there are many highlighted variables from line 117 to 147 in Fig. 12. Then, we can see that this method call executes
else statement’s body and returns on line 147. At line 147, we can find that the method passed a result of a method call 
“str.substring(6)” to a constructor of Locale class. The if statements do not check “#” at all in the method. This 
is the cause of the bug. In the fixed version of the program, the following if block is inserted into the method at line 92.

if (str.contains("#")) {
throw new IllegalArgumentException("Invalid locale format: " + str);

}

In this debugging session, the actual values of variables recorded in the trace are effective to investigate the behavior of 
the failed test. While the trace does not record the complete execution, the trace still maintains variable values observed 
for the corner case.
10
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Fig. 11. A filtering result of the toLocale method in Lang 2b (The first half of the method).

4.2. Use Case 2: Math 59b

The second example is Math 59b. The method FastMath.max() compares two float values and returns a greater 
one. The method is tested by the test method testMinMaxFloat() in the source file src/test/java/org/apache/
commons/math/util/FastMathTest.java. This test method calls the FastMath.max() method with various pa-
rameters and compares the results with Math.max() as follows.

78: public void testMinMaxFloat(){
79: float[][] pairs = {
80: { -50.0f, 50.0f },

...
89: };
90: for(float[] pair : pairs){

...
99: Assert.assertEquals("max(" + pair[0] + "," + pair[1] + ")",
100: Math.max(pair[0],pair[1]),
101: FastMath.max(pair[0],pair[1]),
102: Math.Utils.EPSILON);
103: Assert.assertEquals("max(" + pair[1] + "," + pair[0] + ")",
104: Math.max(pair[1],pair[0]),
105: FastMath.max(pair[1],pair[0]),
106: Math.Utils.EPSILON);
107: }
108: }

The test method fails and produces the following message.

java.lang.AssertionError: max(50.0, -50.0) expected:<50.0> but was:<-50.0>
at org.apache.commons.math.util.FastMathTest.testMinMaxFloat (FastMathTest.java:103)
11



K. Shimari, T. Ishio, T. Kanda et al. Science of Computer Programming 206 (2021) 102630
Fig. 12. A filtering result of the toLocale method in Lang 2b (The second half of the method).

Fig. 13. Failure induced method at Math 59b.

The method under test returned an incorrect value -50.0 for the first value (-50.0f, 50.0f), written in line 80.
We recorded an execution trace of the test method with k = 64. It resulted in 4.0 MB. 3,841 out of 7,356 instructions 

(47.8%) were executed more than 64 times; the full execution trace of the test method resulted in 12.4 GB. Our tool recorded 
only 0.03% of runtime events. The cause of the significant reduction is the setting up of method defined as follows.

@Before
public void setUp() {
field = new DfpField(40);
generator = new MersenneTwister(6176597458463500194l);

}

Before the unit test is executed, the setup method is executed. The method is short but executes a large number of 
methods; all the runtime events excluded from our trace belong to the method. The recorded trace includes the complete 
execution of the test method.

The test targets are FastMath.min() and FastMath.max(), which return the minimum and maximum values of 
the two values in the file src/main/java/org/apache/commons/math/util/FastMath.java. From the error 
message, we have to check the execution trace of FastMath.max(). Fig. 13 shows a view of the method. We can easily 
see the actual values used in the two method calls. Then, we can easily find that we should fix the value of the last variable 
b to a at line 3,482. This case also shows that a complete execution trace is not always needed for debugging.
12
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5. Conclusion

NOD4J monitors and visualizes detailed software behavior with reducing storage space consumption. The tool is suitable 
for monitoring remote program execution, such as testing on continuous integration servers, and visualizing the behavior of 
test failures on a web browser. As illustrated in the usage examples, our tool can debug defects using incomplete execution 
traces, while it can record complete execution traces for many bugs.

In future work, we would like to investigate effective logging for textual content such as strings and exceptions. Another 
future research direction is the development of automated debugging methods utilizing near-omniscient execution trace. 
We also would like to improve the interactive view page so that it can provide an understandable view for large values of 
k with visualizing the sequence of the values of variables. Finally, as part of our future work, we will ensure that NOD4J 
responds dynamically to added/removed execution traces.
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