Systems and Computers in Japan, Vol. 37, No. 11, 2006

Translated fsom Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J87-D-I. No. 8. August 2004, pp. 815-823

Program-Delta Oriented Debugging Supporting Method DMET

Makoto Matsushita.' Masayoshi Teraguti.2 and Katsuro Inoue'

'Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531 Japan

‘7'Toky0 Research Laboratory, IBM Japan, Ltd., Yamoto, 242-8502 Japan

SUMMARY

Rescarch has been conducted on methods of automat-
ically performing tests that focus on the della (difference)
between a revision that is known to function normally in
advance and a revision that contains defects to identify the
causes of the defects. However, since software had to be
created from source programs for cach test, an extremely
long test time had been required. Also, since the emphasis
had only been on the testing tasks and no consideration was
given to debugging tasks, these methods were not practical.
Therefore, in the current research, the authors propose the
DMET debugging technique, which can be used for actual
software maintenance. DMET, which reduces the test exe-
cution time compared with conventional techniques, sup-
ports the entire sequential processing flow from testing to
debugging. Also, o verify the effectiveness of the proposed
technique, the authors implemented the DSUS develop-
ment support environment, which uses DMET, and per-
formed comparison experiments. From the results, it was
apparent that using DMET cnabled the total debugging time
to be shortened. © 2006 Wiley Periodicals, Inc. Syst Comp
Jpn, 37(11): 3543, 2006; Published online in Wiley Inter-
Science (www.interscience.wiley.com). DOI 10.1002/
scj.20351

Key words: revision munagement; delta; debug-

2
=
fiq

'
W

1. Introduction

Software maintenance is processing that is performed
1o enable active software to continue operating or 10 im-
prove that software [3]. The proportion of the total cost of
software devoled to maintenance has risen Lo approximately
80% [4], and approximately 65% of the total lime spent by
people involved with software is devoted to maintenance or
tasks related to it [2].

To understand the essence of soflware maintenance,
Swanson classified the main causes for which software
maintenance is required into three basic types [15]:

o Defects that cause errors within the software

¢ Changes to the environment surrounding the soft-
ware

® Requests by users or personnel responsible for
maintenance

In addition, Swanson defined the maintenance activi-
ties that are executed corresponding 1o these basic causes
as follows:

¢ Corrective maintenance: Identifies and corrects
errors

s Adaptive maintenance: Makes corrections accord-
ing to changes in the environment

» Perfective maintenance: Improves performance
and alters or adds functions

Generally, among these soltwire maintenance activi-
ties, the ones that tend to be considered to occur most ofien
are aclivities for corrective mainienance. However, when

© 2006 Wiley Periodicals, Inc.

Lientz and Swanson conducted surveys in the 1980s for the
first time, they reported that corrective maintenance com-
prises no more than 20% of maintenance tasks, and perfec-
tive maintenance accounts for 55% [11].

During these mainlenance activities, many changes
are made to existing software. However, research by Helzel
showed that the probability that errors will be introduced
when software is modified was from 50% to 80% [7].
Therefore, during corrective maintenance and perfective
maintenance, which conmprise 75% of maintenance activi-
ties, operation must be verified not only for functions in the
parts that were modified, but also for functions in parts that
were not modified.

Regression testing [6, [0, 13] has been widely used
for thesc operation verification activities that occur during
development. Also, the software that is developed is often
managed by using a software management system such as
a revision management system [1, 16]. Attention given to
these two points has led to previous research on means of
supporting perfective maintenance of softwarc that was
being managed by a software management system [12, 17].
However, the test tools [9] that were to be used when
executing tests had to be established and testing had to be
performed manually in certain circumstances. Also, sup-
port for the debugging tasks that are performed aiter testing
was insufficient.

Therefore, the current research targets perfective
maintenance tasks that are performed to modify or extend
functions. During these kinds of maintenance tasks, parts
other than the functions for which the tasks were performed
may be affected. and defects may be detected by the tests.
In this paper, we propose the DMET debugging technique,
which uses regression testing, to efficiently eliminate these
kinds of defects.

This technique first chooses product revisions se-
quentially and uses a test tool to automatically perform
testing. When a revision that outputs defects and a revision
that outputs normally are detected as a result of testing, the
corrections that were performed between these revisions
are assumed to contain an error. Next, a check is performed
to determine which parts in the current revision correspond
to these correction contents (hereafter, referred to simply as
the delta). The user uses these results to perform debugging
and correct the defects. By also reflecting those changes in
the old revision after the defects were corrected. they can
be used for subsequent tests.

To verify the effectiveness of DMET, we created a
trial debugging support system named DSUS, which uses
DMET. and performed comparison experiments using
DSUS. From the experimental results, it was apparent that
DMET was able 10 support the sequential processing flow
from testing to debugging and that it could shorten the time
required for debugging tasks during actual maintenance.

36

2. Software Maintenance

2.1. Maintenance tasks

The tasks that are performed to modify software
during maintenance activities basically can be classified
into the following three types.

(1) Understanding the sofiware and the modifications
that must be made

(2) Modifying the software

(3) Verifying the operation of the modified software

Of these, if the type (1) tasks are performed correctly,
they arc useful for investigating the causes of defects that
are discovered. Conversely. if the software is poorly under-
stood, a great deal of time will be required to investigate the
causes of defects and correct them. As a result, one tech-
nique for improving software understandability and main-
tainability is to perform software configuration
management or revision management.

Software configuration management refers to tasks
for identifying, controlling, and understanding the states of
various products that are created during the software devel-
opment and maintenance processes {5]. Also. revision man-
agement consists of tasks for correctly recognizing,
organizing, and managing the various corrections made to
the products (software or accompanying documents) that
were created by the development team. Models of various
management techniques have been proposed. In addition,
revision management systems based on those models have
been implemented (1, 16]. Normally, products are revised
multiple times, and the product that is created for each
alteration is calied a revision.

When performing type (3) tasks, one technique for
testing whether or not the software operates with the per-
formance required by the specifications after the software
was modified is 1o perform regression testing (6, 10, 13].
Regression testing, which has been put to practical use
during actual software maintenance. is used for examining
whether corrections were performed properly.

2.2, Problems with existing techniques

During the maintenance stage for software that was
developed by using a revision management system, there
exists a revision (hereafter, referred to as the base revision)
that operates with the performance required by the specifi-
cations. With conventional software maintenance, the pro-
gram of the base revision is changed and the operation of
the software is verified by using regression testing during
the types (2) and (3) maintenance tasks described above.

It a defect is discovered during testing, the types (1)
and (2) maintenance tasks are performed repeatedly (o
eliminate the error that is the cause of that defect (Lo perform
debugging). However, if the defect is found in a function
that has not been changed, it is generally difficult to find the
error that caused it.

Therefore, rescarch has been conducted {12, 17] to
identify the error that is the cause of the defect by automat-
ically performing testing using the corrections that were
made from the base revision until the cwirent revision.
However, a great deal of time was required for testing
because each lime a test was performed, software for ap-
plying the test was created by modifying and compiling the
base revision. Education and training related to the test tool
[9] that was used for testing were also required since each
time a defect was discovered, test cases had to be sequen-
tially created corresponding to that defect. In addition, since
only the testing task for identifying the cause of the defect
was emphasized and no consideration was given to the
subsequent tasks up to debugging, the technique could not
be directly applied to actual maintenance tasks.

3. DMET Debugging Technique

This section describes our proposed DMET debug-
ging technique, which uses regression testing and program
delta information that is maintained by a revision manage-
ment syslem.

3.1. Overview

DMET, which derives its name from Debugging
METhod, is a technique for improving the efficiency of
debugging tasks when all functions work normally in the
base revision but defects are created and incorporated in
some functions during maintenance tasks. DMET elimi-
nates defects by repeatedly applying a testing technique,
display technique, and reflection technique.

The testing technique automatically performs tests by
using a test tool to identify the causes of defects between
revisions. DMET uses regression testing to verify whether
or not each revision contains defects. If a defect is detected
during regression tesling, a test (hereafter, referred 1o as a
localization test) is performed to verify which revision that
defect was created in and incorporated.

The display technique displays the delta with the
revision of the executable program that was identified by
the testing technique on the latest revision of the source
program. Since source program correction tasks ar¢ gener-
ally performed on the latest revision, this technique auto-
matically obtains the modifications that were made from
the identified revision until the latest revision.

The reflection technique veflects the modifications
that were made during the correction tasks in the latest
revision while going back through the revisions to the
revision that was identified by the testing technique. In this
paper, we will refer to the collection of revisions in which
defects occurred during tests and for which corrective
modifications must be reflected in the latest revision as
reflection-required revisions. By applying the corrections
to the reflection-required revisions, subsequent testing
tasks can continue more efficiently.

In the following sections, we will first describe the
software development environment that is predicated for
the proposed technique and then explain specific proce-
dures for the testing technique, display technique, and
reflection techniques.

3.2, Prerequisite environment for applying

DMET

This scction describes prerequisite conditions for the
software, its development and maintenance, and the person-
nel responsible for software maintenance when our pro-
posed debugging technique is used during software
maintenance. These types of prerequisites are widely used
such as in the development of open source software, which
has reached a certain degree of maturity. Therefore, we
believe that these prerequisite conditions can be applied
without problem in the software development environments
that have been usued in recent years.

¢ Development is performed by using a revision

management system

We assume that development tasks are performed
using a revision management system to understand the
work history during development in terms of relatively
detailed units. The revision management targets are soft-
ware source programs and compiied files. When compiled
files are registered as revisions, relationships between the
relevant files and source program revisions are also regis-
tered as collateral information.)

e A base revision exists

The target of this technique is software maintenance
tasks. Therefore, we assume that by letting the software at
the time that the maintenance tasks started be the base
revision, a revision always exists for which all functions are
guaranteed to operate before modifications are made.

¢ Some output is produced in response to input

Since this technique uses a testing tool to judge
whether the output is correct for the enlered test data, the
target of this technique is software that produces output. We
assume here that the output is generally some visible result
such as the output of a character string to a terminal, for
example.

» The input and usage environment are not changed

Since large-scale specification changes are not gen-
erally made during software maintenance aclivities, we
assume that the input to the software does not change. In
other words, the input parameters themselves do not in-
crease or decrease. For similar reasons, the proposed tech-
nique also is based on the assumption that the software
usage environment does not change. In other words, the
hardware or operating environment does not change.

In this kind of software development environment, a
developer generally registers development results in the
revision management system in terms of small work units.
When a single developer is carrying out small-scale devel-
opment, the regression tesling can also be executed each
time a revision is registered. However, in general, it is often
the case that multiple developers perform individual tasks
while cooperating or that a single developer simultaneously
performs multiple tasks in parallel. Also, development re-
sults in which corrections are incomplete are also often
registered to record the intermediate progress of a collec-
tion of tasks. Since it is meaningiess under (hese circum-
stances for regression testing to be executed each time the
developer registers a revision, regression testing is used to
verify whether the corrections were made properly at the
time that a certain collection of tasks has ended.

3.3. Testing technique

The testing technique automatically performs regres-
sion testing for execuling all prepared tests each time any
change is made to the software.

Let Ty 10 T, denote the sct of tests used for performing
perfective maintenance, which were prepared for the soft-
ware 10 be tested. These tests are prepared in advance when
the maintenance tasks begin. Also, when V;denotes the i-th
revision for a certain file, let Vg represent the base revision
and Vi (B < L) represent the latest revision. Now, consider
the case when test T; (1 £ < n) is applied to the software
at a certain time. First, for each file. let the normal output
of this software be denoted by output result Op; when I,
which is the input of T}, is assigned to Vg, which is the
revision that is known in advance to operate correctly.

Base version Latest version

(7 ERR V] Y A
O X X
\pplication of
loca ization lest
LcIT(i j.k)
Tt To o Ty T

Test set

Fig. 1. Localization test.

38

The test technique first applies all 7;.(1 < i< n) 1o
Vi to verily whether the corresponding output Oy ; matches
Og,. W adefect is detected when a certain test T; is applied,
the localization test LelT(i, L - 1, L) is performed.

The localization test LclT(i, j, k) judges the result
when T;is applied to V; (j ££) and returns the two revisions
between which the cause of the defect exists (Fig. 1).
However, we know here that when 7; is used to perform the
test for V, its output Oy is the same as Oy ;. Figure 2 shows
the algorithm for the localization test Le/T(i. j, k).

(1) If j matches the base revision B, decide that the
“defect exists between Vg and V,"” and end.

(2) Apply test T; to V;. Specifically, assign /; to V; to
obtain output O;;.

(3) If O;; matches Oy, since a defect already exists
in revision j, decide that the test execution result is “*X” (the
same defect is included). In addition, execute LelT(, j - 1,
Jyrecursively and let that result be the result that is obtained.

(4) If O;; matches Og;, since no defect had been
included at the time of revision j. decide that the test
execution result is O™ (no defect is included). Also, decide
that the “defect exists between V;and V" and end.

Localization test: LciT(i.j.k)

V): Test version T, Test

Vi: Defective
version

0, | Test output

I Test input O, , (= O,): Defective
output
Og,; : Normal output

Defect was created and incorporated
between version Ve and Vi

®)
Defect was created and incorporated
between version Vi and Vi

Yo fiari.i1.5)

No
= [No
LefT(i, 1, k)

Fig. 2. Localization test algorithm.

(5) If some other O is oblained, decide that the test

exccution resultis “="" (a new defect was detected). Also, if

no execution result was oblained because the software was
abnormally terminated, set “A™ (no result was obtained). In
either case, execute LelT(i, j - 1, j) recursively and let that
result be the result that is obtained.

This technique identifies the location that contains
the defect by lincarly scarching each revision sequentially
starting from a new location. If, for example, the results are
only “O™ and *X” and a transition from “0™ to *X” occurs
only once, then efficient scarching can be done by using a
binary search. However, if another output is included as a
prerequisite or if multiple transitions from “0” to"*X™ or vice
versa occur for some reason, then a binary search cannot be
used here.

3.4. Display technique

To display the delta with the revision that was de-
tected by the testing technique [this is assumed here to be
between revision C and revision E (C < E < L)] in the latest
revision L, first the software and source program relation-
ship information is used to check which revisions of which
source program correspond to the delta that is highlighted.
The highlight is displayed as [oliows according to whether
code was deleted or inserted between the two revisions.

[Deletion] Nothing appears in the source program of
the current revision, and the pre-moditied source program
cannot be highlighted (Fig. 3). As a result, this situation is
highlighted in the latest revision by a mark indicating ihe
location and contents of the deleted source code (dotted line
in V; in Fig. 3).

[Insertion] The part that appears in the source pro-
gram of the current revision is highlighted (see Fig. 4).
Although some modifications arc also made after the inser-
tion, the part that is the fatal cause of the defect is considered
to have not been changed.

3.5. Reflection technique

If a new defect is detected by the localization test, thal
defect is first eliminated for the latest revision L (hereafter,

Ve

1

2

3

4

)

G //

Ll Ll ke - ¥ 4

9
:10'—'—' Since this part is deleted. it may cause the defccl)

Fig. 3.

Code deleted between revisions.

Ve Vi
1 1
2 2
3 3
4 []
g———— " N 5§ ———
s R —
7 . Y F
f‘_ e 7 :
Even if this pat is delcted. it —_ 0
E\ not the Cﬂ:l‘;&‘ of the dth :?—— 10

Fig. 4. Code inserted between revisions.

the delta in which this is done will be referred to as the
correction AL). Next, 1o continue the localization tests, AL
is reflected in past revisions. First, a patch program is used
to apply AL to past revisions, and the new software that
should be created is compiled. If compilation is success{ul,
the result is used as a new program to be tested. If the AL
patch fails or if the AL patch succeeds and compilation fails,
that revision is excluded from subsequent regression test-

ing.

4. Evaluation Experiments

This section describes DMET evaluation experi-
ments using the DSUS debugging support sysiem that is
based on DMET.

4.1, Trial system DSUS

To construct a debugging support system based on
DMET, we paid careful attention 10 the following points
when creating the system.

o Independence from a programming language

Generally, constructing a system that depends on a
programming Janguage enables more detailed debugging
support to be provided. However, since many programming
languages are currently used for program development and
since DMET itself is a technique that is not dependent on a
language, we decided that DSUS should not have lunctions
that are dependent on a specitic programming language.

¢ Support for both testing and error correction

DSUS provides an environment for correcting errors
that were detected by tests, not just for automatically exe-
cuting tests. As a result, development tasks can be com-
pleted within DSUS.

¢ Automatic execution of tools

Sequentially executing each of the tasks that were
described for DMET beginning with test execution can
impose an even greater load on the developer. With DSUS,
we aim to reduce the load incurred by introducing DMET
by automatically performing the DMET procedure and the
tests that accompany it

I0YI0 Ul PALINDI0 SIDAJ3P YdIym Ul (g 2IemIJOs pue v
AIEAVJOS SE 0] PALIDJDL {I21JBDIOY) SIINPOU IRAJOS IS JO
om] "apoo Jo saul] 0ps Arewixosdde uteyuoo *adendue
Ayl Ul UDNLIM UDIG JABL UDIYM ‘SO|NPOLI AIBMIJOS JURAI[DI
ay1 "way 01 pappe dulaq st sisureiuod Kidws Jurysew 1oy
uonounj e pue "paredasd uaaq Lpeasie aaey wojqold Japrap
ayes ay jo wed Jaureiuos Aidwa yrew,, oyy uetp 1ayjo sued
ap pawwswopdun Kpradosd eyl sampow aremijog

1das gt

“Pa102[[02 Sea 1ey) a1em1jos ay Juisn Aq FuiS3ng
-op suuojsad dwpadxo sy "pa1oafjos pue pado(aaap si
7 dais u1 pasn ag 01 st 1Y) a1em]jos 1a81e)-5uid3ngap ayl ¢ |
dors ug g pue { sdais oy papialp sem judtunadxa ay |
'[8]) wopgoid sareap
ayes ayl sem 1981e1 Su183nqop Ayl se pasn sem 1YL wiajgoud
AIEM1JOS 3 L, "Pasn 3q 10u p[nod T FINC U0 paseq suoloun)
uoisiaal o1j1oads K|uo 1Byl os paindyuod udaqg pey yarym
SNSA Suisn Aq wayl paunojiad & pue ‘§NS Fuisn Aq
syse) Suiddngap pauutojrad !9 (2o pue {n) sdnoid omi ojut
paptalp a1am s1dafgns oy -asuauadxa Bunuwesdosd O jo
JUNOWE UIRLIAD € PRY [[© OYM SIUIPNIS 2IENPRIT PUE SIOLUDS
a8ajj05 (1 219m JudwILIAdXa siY) Ul $100{gns 1591 Ay,
-anbiuyo9) [ruOnULAUOD 31 01 Buipiodoe
pawopiad a19m Lauy uaym pue LTINCT O1 SUIPIOIdE palLIo)
-1ad o3om syser Suiddngop uaya pannbar sea ey awn
JO JUNOWE 1 UL 2DUAIDYIP OY) JUIUIEXD 0] S ST PIST am
‘anbiuyoa pasodoid ayy jo Leonoead ayy moys of

yuaturiadxa ay) Jo MANIAQ TH

-uonmudwaiduil [N Y1 Joy pasn sem +31LD
*0S[V 'apod o soul] 000'0g Awewixoidde sureuod pue
aden8ue| H sy Juisn pawdwsduwi usaq sey SNSA

IND $NSA Jo 10ysuaadg 9 ‘314

TIWED W
T :

agTm 3t

-aPAIAs 122q %

SR TP Jou S0 DY,

hl ¥

g
i 7y i
SRETITP YLD U) SIUNLHI .
30 JOQUEIU UITRUN TR

or

‘uoneindyuod sNSa ¢ Jig

eep 1531

sinsas 19
UOJSIaA

uoneuuo;uj

aBelois

| T T T .

“10{00 © ut payB1ydy st pauteiuod
3q 01 PAIBPISUOD ST JOLID JY) UDIYMm UL UOISIAL 3 “Isa] ©
JO 1[nsa1 & SE PA)DAIP S1 0L ue J['uaa1ds iyl jo dor ay e
suonng ayy 3uisn £q 1591 & Sunndoxa sk yons suonoe Aj1oads
os[e ued 1ado[aAop au] ‘mopuim sniels ay) wolj it Suldajas
Aq uorstaar Aue Jo apod 201nos Yl 1pa ued sadofdaap
YL -(uda1ds ayl jJo ued w3u) smopuim smels pue (uUoalds
ay Jo ued 1)a1) mopuim 1011pa ue JO SISISUOD Apsow (9
319) IND SNSA 2yl “1ed sup Ag pauniojiad ase wawade
-UeW 1$3) pUt *uoNEINE1JUOD JUAWUOIIAUD UOTINIIXD nucyel
-3 -suonessdo §OY wdwadeurw [0 WSS §NS
211u2 dY) Jo 2103 a1 suoy 1ey) wed ay st MgnSq

“Bunsal uoissaiFol unnaaxs
10y SNSA ut pasn st *sajdipund aoinos uado o1 Suipios
-ov padojoaap Buidg SI IBY1 YIOMOWEI] UOANIIXD 1SM) B Si
Yo1ym ‘nunelag "s[eatsiul paxij 1 §OY ul SIUANUOD pajIpa
3yl Sund1s13a1 Aq IP0OD 221N0S SHPa JadOIAIP T uAYMm SOHY
U1 PAIAISI3L dIe 1BY) SBIIP 2Y) JO IZIS Y] PAONPII OS[E Ipn
‘paunioptad aq 10u pinom suonesado snasaFuep 1o uayeisiw
ey 0s $OY ut suonelado Jasn Jof adej0ul ue se awesado
0} SNSA poIeaId apy ‘siuawuoaud wawdopoasp Auew
Ul Pasn sI 1.yl waisAs JUIWITLURW UOISIAAL B ST SO

"$10113 UIBIUOD 0}
Wdnoy ase ey seijap Juikeidsip pue apoo aaunos Sunipa
10] pasn si [ND YL (S S sasn ay) 10) (ND & pue ‘(1]
nuoela “f91] $o¥ “*™snSa Jo sisisuod SNSA

Table 1. Development history of software used in this

experiment

Software nane Number of Number of times tests
revisions were performed
A 28 25
B 91 10

functions due to this extension are the software modules
that are to be debugged in step 2. Table 1 shows a list of the
software modules that were collected and their develop-
ment history.

For example, software A has a total of 28 revisions
where the software that was provided first was the first
version. Localization tests were executed 25 times accord-
ing to DMET for software A, and as a result, it was apparent
that the deltas between revisions that were detected by
DMET contained defects.

4.4. Step2

Groups G, and G, were each given three software
modules that contain defects, which were obtained in step
1, and asked to use DSUS to perform debugging tasks. Test

+ data that had been prepared in advance was used as the test
data used for debugging, and debugging ended at the time
that the test subject verified that the processing could be
performed correctly for the assigned test data. The time
taken by each test subject from when debugging started
until it ended was totaled. Tables 2 and 3 show the debug-
ging times (in minutes) obtained by this experiment for the
test subjects (T to T10).

4.5. Discussion

When we used a Welch test with a significance level
of 5% for the debugging time totals for software A and B,
we verified that a significant diffcrence was seen between

Table 2. Debugging times for G,
(when DMET was used)

Subject Average (Minutes)
Tl 75
T2 62
T3 65
T4 79
TS 54
All of G, 67.0

41

Table 3. Debugging times lor G,
(when DMET was not used)

Subject Average (Minutes)
16 237
T7 107
T8 237
T9 69
TI10 165
All ot G- 163.0

G, and G,. 1t is apparent from this experiment that using
DMET can shorten the debugging time.

5. Related Research

This section considers research related to techniques
that had been used previously for identifying errors that
cause defects and describes probicms involved in those
existing techniques.

5.1. Research of Ness and Ngo

Ness and Ngo used a technique called regression
containment for compiler development at Cray Research
{12]. The technigque of Ness and Ngo first performs regres-
sion testing automatically. If regression testing fails, then
using the fact that the base revision operates correctly,
testing is repeatedly performed while executing the correc-
tions that were oblained from configuration management in
the order that the corrections were actually applied. At the
stage when the test failed, the correction that was applied
at that time is identified as the error that caused a bug.

However, although the technique of Ness and Ngo
operates well in certain situations, it does not operate well
when the test first fails because multiple deltas are applied
instead of just a single della or when an inconsistency
occurs so that the program cannot be compiled when a
change is applied.

5.2, Research of Zeller

Zeller proposed a technique [17] that can also deal
with defects due to multiple errors or inconsistencies due
ta the application of changes. which are problems with the
technique of Ness and Ngo. Zeller's technique considers a
correction as one clement of a set without taking into
consideration the order in which corrections are applied.
Therefore. if the number of corrections that were made is
n, then the number of sets that are considered is 2. Zeller
uses an algorithm that finds the set having the minimum

number of elements for which a defect occurs from among
the sets that are considered. By using sets of corrections,
this algorithm succeeds in identifying the causes of defects
that occur due to multiple errors. The algorithm, which can
also deal with inconsistencies due to the application of
changes, can detect errors that could not be found by using
the technigue of Ness and Ngo.

However, although making the algorithm more com-
plex increases the precision of identifying the delta that
caused the bug. the number of sets that must be tested
increases cxponentially relative to the number of correc-
tions. Therefore, the number of times tests are performed
increases. and an enormous amount of time is required for
testing.

5.3. Problems

The techniques of both Ness and Ngo and Zeller
consider the source program of the base revision as a
baseline. and corrections must be applied to that source
code each time and the corrected source code must be
compiled to perform testing. Also. since compilation must
be performed while accurately managing which corrections
were made to which source programs, the task is complex
even if only simple compilation is being performed.

To find the cause of a defect, you must create test
cases and perform testing yourself, and you must study
about or undergo training for the test tool that is being used
for each technique. In addition, since these techniques
emphasize only testing tasks for identifying the causes of
defects and do not take into consideration debugging tasks,
it is difficult to apply them to actual maintenance tasks.

DMET enables compilation tasks to be easily per-
formed by using a support environment such as DSUS since
information indicating which source programs are 10 be
compiled at which times are managed within the framework
of DMET itself. Also, since test cases are first created in
DMET and used for debugging, you need not create test
cases corresponding to defects yourself, and the time re-
quired for crealing test cases is reduced. Since DMET is
intended not only for identifying defects but also for all
tasks that are included up to debugging, it can easily be
applied even in actual maintenance tasks. which we showed
by the current experiments,

6. Conclusions

In the current research. we proposed the DMET
debugging technique, which is intended for maintenance
tasks. We also showed the effectiveness of DMET through
experiments using the DSUS trial system. Using the pro-
posed technique can be expected to enable debugging tasks
to be performed more easily during actual maintenance.

Some future topics of research are as follows. First,
we plan to improve the delta detection algorithm so that
delas that contain defects are detected more accurately.
When the deltas that are detected by DMET become rela-
tively large. even if the resulls that are oblained by using
DMET are used, they will not contribute to a reduction of
the working time. For such cases, we plan to investigate
methods of having DSUS judge this situation in advance
and alert the developer instead of just simply exhibiting the
results.

REFERENCES

1. Babich WA. Software configuration management.

Addison-Wesley; 1986.

CASE 1988-89, Sentry Market Research, Westbor-

ough, MA, p 13-14, 1989.

3. McClure C (author). Best CASE Research Group
(translators). The three Rs of sofiware automation.
Kyoritsu Shuppan; 1993.

4. Cashman PM, Holt AW. A communication-oriented

approach to structuring the softwarc maintenance

environment. Software Engineering Notes 1980:5:4—

17.

Conradi R, Westfechtel B. Version models for soft-

ware configuration management. ACM Computing

Surveys 1998;30:232-280).

6. Dogsa T, Rozman 1. CAMOTE—Computer aided
module testing and design environment. Proc Con-
ference on Software Maintenance-88, p 404—408,
Phoenix, AZ.

7. Hetzel W. The complete guide to software testing.
QED Information Sciences; 1984,

8. Kudo H, Sugiyama Y. Fujii M, Torii K. Quantifying
a design process based on experiments. Proc 21st
International Conference on System Sciences. p 285-
292, Hawaii, 1988.

9. IEEE. Test methods for measuring conformance to
POSIX. ANSUV/IEEE Standard 1003.3-1991,
ISO/IEC Standard 13210-1994.

10. Leung HKN, White L. Insights into regression test-
ing. Proc Conference on Software Maintenance-89,
p 60-69, Miami, FL.

1. Lientz B, Swanson E. Software maintenance man-
agement: A study of the maintenance of computer
application software in 487 data processing organi-
zations. Addison-Wesley; 1980. p 151-157.

12. Ness B, Ngo V. Regression containment through
source code isolation. Proc 21st Annual International
Computer & Applications Conlerence (COMPSAC
97), p 616-621, IEEE Computer Society Press.
1997.

(5%

W

13, Raither B, Osterweil 1. TRICS: A testing tool for C. I6. Tichy WF. RCS—A system for version control. Soft-

Proc First European Software Engineering Confer- ware~Practice and Experience 1985;15:637-654.
ence, p 254-262, Strasbourg, France, 1987. 17. Zeller A. Yesterday, my program worked. Today, it
14. Savoye R. Test DejaGnu testing framework for De- does not. Why? Proc 7ih European Software Engi-
jaGnu version 1.3. Free Software Foundation; 1996. neering Conference and 7th ACM SIGSOFT Interna-
15. Swanson E. The dimensions of maintenance. Sccond tional Symposium on the Foundations of Software
International Conference on Software Engineering Engincering (ESEC/FSE "99), p 253-267, Toulouse,
Procecdings. San Francisco, p 492-497, 1976. France.

AUTHORS (from left 10 right)

Makoto Matsushita graduated in 1993 with a specialty in Information Science from the Department of Engineering
Science at Osaka University, took a leave from the second half of his doctoral course in 1998, and became an assistant in the
Department of Engincering Science. He has been an assistant in the Graduate School of Engineering Science since 2002 and
an associate professor since 2005. He is engaged in research on software development environments, software development
processes, and open source development. He holds a D.Eng. degrce.

Masayoshi Teraguti graduated in 1993 with a specialty in Information Science from the Department of Engineering
Science at Osaka University, completed the first half of his doctoral course in 2000, and joined the Tokyo Research Laboratory,
IBM Japan, Ltd. While at Osaka University, he was engaged in research on debugging support environments. He holds an M.E.
degree.

Katsuro Inoue (member) graduated in 1979 with a specialty in Information Science from the Department of Engineering
Science at Osaka University, completed his doctoral course in 1984, and became an assistant in the Information Division of the
Department of Engincering Science there. From 1984 1o 1986, he was an assistant protessor in the Computer Science Course
at the University of Hawaii Manoa Campus. In 1988, he became a lecturer in the Information Science Division of the Department
of Engineering Science at Osaka University, an assistant professor in 1991, and a professor in 1995. Since 2002, he has becn a
professor in the Graduate School of Engineering Science. He holds a D.Eng. degree. He is engaged in research on software
engineering.

43

