
Towards Effective Reference Analysis for Software Component Retrieval System

Makoto Ichii† Reishi Yokomori‡ Katsuro Inoue†

†Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{m-itii, inoue}@ist.osaka-u.ac.jp
‡ Department of Information and Telecommunication Engineering, Nanzan University

27 Seirei-cho, Seto, Aichi 489-0863, Japan
yokomori@it.nanzan-u.ac.jp

Abstract

Software reuse is broadly recognized as a way to
accomplish efficient software development. Especially,
lightweight software reuse using software component re-
trieval systems becomes popular; however, such reuse of-
ten causes problems against software traceability since soft-
ware developers are able to reuse software components
without knowing where the components are from. Devel-
opers should spend time and effort to investigate the origin
of a component to reuse including the ones on which it de-
pends requires additional effort. In this paper, we discuss
about problems of current retrieval systems and effective
reference analysis between components which aims to help
developers reuse components considering the traceability.

1 Software reuse

Software reuse is a popular way to improve software de-
velopment productivity[7]. But the reused software com-
ponents may cause legal problems if developers reuse soft-
ware components without caring the origin or the terms of
use of the component. Therefore software reusing activi-
ties should be logged as empirical data, which aims to ac-
complish software traceability and accountability, like other
software development activities such as designing, coding,
testing and so on. However, collecting the information
about reuse is not trivial issue because there are many types
of reusable software such as offshore product, open source
software in addition to in-house software product.

In this paper, we focus on the lightweight reuse[4],
which is contrastive with the controlled reuse[6], using soft-
ware component retrieval system. In this type of reuse,
reuse activity is hard to track because components from var-
ious origins are retrieved and reused on-demand. Develop-

ers should validate components to reuse whether their terms
of use does not violate the policy of the project or company.
The origin or author of components may be also required for
collecting traceability data. It is desired that software com-
ponent retrieval systems provide traceability information in
addition to components themselves.

2 Software component retrieval system

A software component retrieval system is a system which
archives and indexes software components1. SPARS-J is a
software component retrieval system where developers re-
trieve Java components by full-text search of source files[5].
SPARS-J provides use-relation (cross-reference) between
components and component ranking systems based on the
relation. Sourcerer[3] is similar system, while it pro-
vides additional features such as fingerprint-based search.
Koders[1] supports many types of languages and provides
rich origin information, but use-relation is not available.

When a developer reuses a component, usually the
components to which the target component has refer-
ences should be retrieved and reused. However, such
referred components are hard to be identified because
the database of a software component retrieval system
has several components sharing the same name (and the
same API). For example, demo.spars.info[2] have three
org.w3m.dom.Document classes; one of the classes
have different source code from the other Documents (ac-
tually, it seems to be a new version). We found in a prelim-
inary investigation that the 302,545 Java components in the
component database of demo.spars.info fall 249,522 groups
by their names; 34,642 of the groups contain more than one
component; 207 of the groups contain ten and above com-
ponents. Each of such groups includes versions of a compo-

1In this paper, a software component (or a component) means a building
unit of a software system such as a module, a function or a class.



nent, different implementations of a same API, or unrelated
components sharing a name accidentally.

When a reused component refers another component and
a developer needs the referred component, it is enough that
a feasible component is automatically identified as the re-
ferred component by the retrieval system if he just wants
to complete his software system. However, if the developer
should be conscious of the origin of reused components,
he should investigate the candidates by himself. In other
words, the retrieval system should not narrow down the can-
didates. For example, let component A contains a reference
to component B, different components B1, B2 are named
B, a developer may be able to use B1 only, while another
developer may be able to use B2 only.

Therefore, it is needed for software component retrieval
system for aiding traceable software development that com-
ponent use-relation includes alternatives is available in ad-
dition to the origin information of components.

3 Reference analysis

For simple, let all classes be referred by the fully quali-
fied name (FQN). A problem where analyzing use-relation
between components by identifying the references in a com-
ponent to other components is described as follows: Let F
is a set of references, E is a set of referable programming
entities (classes and members of a class in components),
f ∈ F and e ∈ E, the problem is acquiring R which is a
set of relation r, relation between f and e. Since we assume
the case that there are several classes sharing the same FQN
(fully qualified name), in order to make correspondence ref-
erence to entity, only one class is selected for each FQN.
Therefore each r has an identifying condition D as an at-
tribute. D is a set of d = (n, ec, c), where n is the FQN of
a class, ec is a class corresponding to n, c represents con-
fidence of the correspondence. Confidence represents how
a correspondence is credible. The value is an element of
C = {DEF, ALT}. The confidence value of d is DEF if
there are evidences which denotes that the correspondence
should be accurate on the reference; otherwise ALT. Addi-
tionally, confidence is also defined to relation: If the condi-
tion of the reference consists of DEF only, the confidence
of the relation is DEF; otherwise ALT.

Figure 1 depicts an example, where component A has
a reference to B and there are two components named B:
B1 and B2. The reference to B is identified and relation is
created in two ways. One is the relation to B1 with the con-
dition {(“B”, B1, DEF)} because B1 is in the same origin
with A and it is evidence indicating that A prefers B1 rather
than B2. The other is the relation to B1 with the condition
{(“B”, B2, ALT)}.

When a developer reuse components, the developer con-
siders using the components which have DEF relation first.

Origin 1

Origin 2

A B (B1)

B (B2)

Reference
 to “B”

DEF

ALT

Figure 1. Relation example

If the related component does not satisfy the demand, then
selecting ALT relation and retrieves another set of related
components.

4 Conclusions

In this paper, lightweight software reuse using software
component retrieval system and associated problem against
software traceability are described. Then we discussed on
use-relation analysis based on identification of references in
components in order to encourage lightweight reuse consid-
ering software traceability.

We are constructing the brand-new software component
retrieval system which takes over the features of SPARS-J
and newly implements storing origin information of com-
ponents and the reference analysis described in this paper.

Acknowledgements This work has been conducted as
parts of EASE Project, Comprehensive Development of e-
Society Foundation Software Program.

References

[1] Koders. http://www.koders.com/.
[2] SPARS-J. http://demo.spars.info/.
[3] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi,

and C. Lopes. Sourcerer: A search engine for open source
code supporting structure-based search. In Proc. Int’l Conf.
Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA’06), pages 25–26, Oct. 2006.

[4] R. Holmes and R. J. Walker. Supporting the investigation and
planning of pragmatic reuse tasks. In Proc. 29th Int’l Conf.
Software Eng. (ICSE’07), pages 447–456, May 2007.

[5] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and
S. Kusumoto. Ranking significance of software compo-
nents based on use relations. IEEE Trans. Software Eng.,
31(3):213–225, Mar. 2005.

[6] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse. 1997.
[7] C. W. Krueger. Software reuse. ACM Computing Surveys,

41(2):131–183, June 1992.


