
Towards an Assessment of the Quality of Refactoring Patterns

Norihiro Yoshida, Masatomo Yoshida, Katsuro Inoue
Graduate School of Information Science and Technorogy, Osaka University

1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
Email: {n-yosida, mstm-ysd, inoue}@ist.osaka-u.ac.jp

Abstract—Refactoring is a well-known process that is
thought to improve the maintainability of object-oriented
software. Although a lot of refactoring patterns are introduced
in several pieces of literature, the quality of refactoring patterns
is not always discussed. Therefore, it is difficult for developers
to determine which refactoring patterns should be given
priority. In this paper, we propose two quality characteristics
of refactoring pattern, and then describe an open source case
study on assessing those quality characteristics.

Keywords-refactoring; quality of software pattern; object-
oriented programing; software maintenance;

I. I NTRODUCTION

Refactoring [1] is the process of changing a software
system in such a way that it does not alter the external
behavior of the code yet improves its internal structure.
That is to say, refactoring is a process to improve the
maintainability of software systems.

Several practitioners introduce a lot ofRefactoring Pat-
terns (RP) [1][2]. Each RP includes both a description of a
refactoring opportunity (RO) (i.e., a set of code fragments
that should be refactored) and the corresponding procedure
to perform refactoring (i.e., how to perform refactoring).
However, the quality of each refactoring pattern is mostly
never assessed. Therefore, it is difficult for developers to de-
termine which refactoring patterns should be given priority.

In this paper, we propose two quality characteristics of
RPs, and then describe a case study on assessing those
quality characteristics.

II. PROPOSED QUALITY CHARACTERISTICS OF

REFACTORING PATTERNS

We introduce the following two quality characteristics of
RP.

• Number of ROs: Because a lot of refactoring patterns
exist and developers have only a limited time, it is
desirable to choose RPs that have a lot of ROs.

• Ease of Refactoring: It means that ease of applying
each RP to ROs in source code. When the ease of
refactoring of a RP is high, it means that software sys-
tems involve a lot of ROs that can be easily performed
refactoring. A RP that is difficult to apply often leads to
time-consuming refactoring. Because the aim of refac-
toring is to reduce maintenance cost, time-consuming
refactoring is not desirable. There are two kinds of

refactoring pattern. The first one requires developers
to apply only steps described in its description. On the
other hand, another sometimes requires developers to
apply not only steps described in its description but
also additional steps.

III. C ASE STUDY

In this section, we assess the quality characteristics of
RP which is namedIntroduce Polymorphic Creation with
Factory Method (IPCFM) [2].

We introduce IPCFM and an automated method to identify
ROs in software systems for IPCFM. Then, we discuss
the ROs in several software systems from proposed quality
characteristics of RP.

A. Introduce polymorphic creation with factory method

IPCFM is a kind ofPull up Method [1] pattern that is
aimed at merging similar methods from different classes into
a common superclass. Figure 1 shows an example of IPCFM.
The aim of IPCFM is to merge similar methods except for
object creation statements by introducing factory methods.
An RO for IPCFM is defined as“Classes in a hierarchy
implement a method similarly except for an object creation
step” [2].

As shown in Figure 1(a), the targets of the refactoring
are the test classesDOMBuilderTest andXMLBuilderTest
for testingDOMBuilder andXMLBuilder, respectively. Be-
cause the target classes have similar methods except for
an object creation step, they indicate an RO for applying
IPCFM. This refactoring is comprised of following two
steps.

Step1 As shown in Figure 1(b), a common superclass
(AbstractBuilderTest) for the target classes is in-
troduced, and similar methods in the target classes
are merged into new method in the common su-
perclass.

Step2 A factory method is introduced in each of
the common superclass (AbstractBuilderTest)
and the subclasses (DOMBuilderTest and XML-
BuilderTest).

B. Assessment Method

For our case study, we have developed the tool that
identifies ROs for the target RP by the steps below.



+testAddAboveRoot() : void

DOMBuilderTest XMLBuilderTest

junit::framework::TestCase

・・・
builder = new DOMBuilder(“orders”);・・・ ・・・

builder = new XMLBuilder(“orders”);・・・
+testAddAboveRoot() : void

Similar methods (Code clones)

+testAddAboveRoot() : void

DOMBuilderTest XMLBuilderTest

junit::framework::TestCase

・・・
builder = new DOMBuilder(“orders”);・・・ ・・・

builder = new XMLBuilder(“orders”);・・・
+testAddAboveRoot() : void

Similar methods (Code clones)

(a) Before refactoring

Factory Method: Creator

#createBuilder(rootName : String) : OutputBuilder

+testAddAboveRoot() : void

AbstractBuilderTest

junit::framework::TestCase

#builder: OutputBuilder ・・・
builder = createBuilder(“orders”);・・・

DOMBuilderTest

Factory Method: ConcreteCreator

return new DOMBuilder(rootName); return new XMLBuilder(rootName);

#createBuilder(rootName:String) 
: OutputBuilder

XMLBuilderTest

#createBuilder(rootName:String)
: OutputBuilder

Factory Method: Creator

#createBuilder(rootName : String) : OutputBuilder

+testAddAboveRoot() : void

AbstractBuilderTest

junit::framework::TestCase

#builder: OutputBuilder ・・・
builder = createBuilder(“orders”);・・・

DOMBuilderTest

Factory Method: ConcreteCreator

return new DOMBuilder(rootName); return new XMLBuilder(rootName);

#createBuilder(rootName:String) 
: OutputBuilder

XMLBuilderTest

#createBuilder(rootName:String)
: OutputBuilder

(b) After refactoring

Figure 1. Introduce Polymorphic Creation with Factory Method

Step1 Detect similar methods using a code clone detec-
tion tool CCFinder [3]1.

Step2 Evaluate whether detected methods belong to
classes that have common superclasses in target
source code and whether they include object cre-
ation statements.

We apply the target RP to the ROs inAnt and ANTLR.
To assess the ease of refactoring, we confirm the steps that
are not described in the description of the target RP.

C. Results

Table I includes the result of identifying ROs for IPCFM
in several software systems. For comparison, in Table I, we
show the number of ROs for Pull up Method (PM). We
identify ROs for PM by detecting code clones belonging
to classes that have common superclasses. We should note
that because IPCFM is kind of PM, an RO for IPCFM is
counted towards the number of ROs for PM. According to
Table I, 17.9% of the ROs for PM are the ROs for IPCFM.
We can say that ROs for PM includes more than few ROs
for IPCFM. This indicates that when developers found RO

1In our case study, we set 30 tokens as the minimum length of code
clone.

for PM, they should inspect whether those RO are also for
IPCFM.

When we apply IPCFM to all ROs inAnt andANTLR, we
did not have to apply additional steps that are not described
in the description of IPCFM. This result indicates that the
ease of refactoring of IPCFM is high.

IV. RELATED WORKS

Hsueh, et al.[4] and Huston[5] focus on the quality of
design patterns. We focus on the quality of RPs, and propose
the two novel quality characteristics of RPs.

V. SUMMARY AND FUTURE WORK

In this paper, we proposed two quality characteristics of
RP, and then described a case study on assessing those
quality characteristics of IPCFM. To compare the quality
characteristics of RP, we are planning to assess other RPs.
We should discuss not only proposed quality characteristics
but also change in maintainability because the aim of refac-
toring is to reduce maintenance cost.

ACKNOWLEDGMENT

We thank the anonymous SPAQu’09 reviewers for useful
feedback on earlier versions of this paper. This reseach was
supported by JSPS, Grant-in-Aid for Scientific Research (A)
(No.21240002) and Grant-in-Aid for JSPS Fellows (No.20-
1964).

REFERENCES

[1] M. Fowler,Refactoring: improving the design of existing code.
Addison Wesley, 1999.

[2] J. Kerievsky,Refactoring to Patterns. Addison Wesley, 2004.

[3] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A mul-
tilinguistic token-based code clone detection system for large
scale source code,”IEEE Trans. Sofw. Eng., vol. 28, no. 7, pp.
654–670, 2002.

[4] N.-L. Hsueh, P.-H. Chu, and W. Chu, “A quantitative approach
for evaluating the quality of design patterns,”Journal of
Systems and Software, vol. 81, no. 8, pp. 1430–1439, 2008.

[5] B. Huston, “The effects of design pattern application on metric
scores,”Journal of Systems and Software, vol. 58, no. 3, pp.
261–269, 2001.

Table I
NUMBER OF ROS FORIPCFM

name LOC #classes
#opportunities
IPCFM PM

Ant 1.7.0 198K 994 2 23
ANTLR 2.7.4 32K 167 1 33

Azureus 3.0.3.4 538K 2226 20 42
JEdit 4.3 168K 992 0 1

JHotDraw 7.0.9 90K 487 1 26
SableCC 3.2 35K 237 0 1
Soot 2.2.4 352K 2298 5 53
WALA 1.1 210K 1565 7 22


